Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2003 Aug;111(11):1403–1409. doi: 10.1289/ehp.6105

Increased influence of genetic variation on PON1 activity in neonates.

Jia Chen 1, Madhu Kumar 1, Wendy Chan 1, Gertrud Berkowitz 1, James G Wetmur 1
PMCID: PMC1241633  PMID: 12928148

Abstract

PON1 (paraoxonase-1) detoxifies organophosphates by cleavage of active oxons before they have a chance to inhibit cholinesterases. The corresponding gene PON1 has common polymorphisms in both the promoter (-909, -162, -108) and the coding region (L55M, Q192R). The five PON1 genotypes were determined for maternal blood (n= 402) and cord blood (n= 229) as part of a study of the effects of organophosphate pesticide exposure on infant growth and neurodevelopment. PON1 enzymatic activities were determined for a majority of subjects. The population contained Caucasians, Caribbean Hispanics, and African Americans. PON1 activity was strongly dependent upon the promoter alleles in both maternal and cord blood. For example, PON1 activities for position -108CC, CT, and TT mothers were 146, 128, and 109 arylesterase U/mL (analysis of variance, p< 0.0001), whereas the same PON1 activities for the respective cord bloods were 49.0, 32.4, and 23.2 U/mL (p < 0.0001). Compared with adults, neonates had lower PON1 activity, implying reduced capacity to detoxify organophosphates. In addition there was a larger difference in activity between genotype groups in neonates than in adults. Because the five polymorphisms in PON1 occur in a short stretch of DNA, they were tested for linkage disequilibrium (LD). Significant LD was found among all three promoter polymorphisms as well as between promoter polymorphisms and L55M, with the strongest LD for Caucasians and the weakest for African Americans. The Caribbean Hispanics fall between these two groups. Surprisingly, significant LD also was observed between the promoter polymorphisms and C311S in PON2. LD between the promoter polymorphisms and Q192R was not significant.

Full Text

The Full Text of this article is available as a PDF (218.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abecasis G. R., Noguchi E., Heinzmann A., Traherne J. A., Bhattacharyya S., Leaves N. I., Anderson G. G., Zhang Y., Lench N. J., Carey A. Extent and distribution of linkage disequilibrium in three genomic regions. Am J Hum Genet. 2000 Nov 13;68(1):191–197. doi: 10.1086/316944. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Adkins S., Gan K. N., Mody M., La Du B. N. Molecular basis for the polymorphic forms of human serum paraoxonase/arylesterase: glutamine or arginine at position 191, for the respective A or B allozymes. Am J Hum Genet. 1993 Mar;52(3):598–608. [PMC free article] [PubMed] [Google Scholar]
  3. Atterberry T. T., Burnett W. T., Chambers J. E. Age-related differences in parathion and chlorpyrifos toxicity in male rats: target and nontarget esterase sensitivity and cytochrome P450-mediated metabolism. Toxicol Appl Pharmacol. 1997 Dec;147(2):411–418. doi: 10.1006/taap.1997.8303. [DOI] [PubMed] [Google Scholar]
  4. Aviram M., Hardak E., Vaya J., Mahmood S., Milo S., Hoffman A., Billicke S., Draganov D., Rosenblat M. Human serum paraoxonases (PON1) Q and R selectively decrease lipid peroxides in human coronary and carotid atherosclerotic lesions: PON1 esterase and peroxidase-like activities. Circulation. 2000 May 30;101(21):2510–2517. doi: 10.1161/01.cir.101.21.2510. [DOI] [PubMed] [Google Scholar]
  5. Aviram M., Rosenblat M., Bisgaier C. L., Newton R. S., Primo-Parmo S. L., La Du B. N. Paraoxonase inhibits high-density lipoprotein oxidation and preserves its functions. A possible peroxidative role for paraoxonase. J Clin Invest. 1998 Apr 15;101(8):1581–1590. doi: 10.1172/JCI1649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Boright A. P., Connelly P. W., Brunt J. H., Scherer S. W., Tsui L. C., Hegele R. A. Genetic variation in paraoxonase-1 and paraoxonase-2 is associated with variation in plasma lipoproteins in Alberta Hutterites. Atherosclerosis. 1998 Jul;139(1):131–136. doi: 10.1016/s0021-9150(98)00071-9. [DOI] [PubMed] [Google Scholar]
  7. Brophy V. H., Hastings M. D., Clendenning J. B., Richter R. J., Jarvik G. P., Furlong C. E. Polymorphisms in the human paraoxonase (PON1) promoter. Pharmacogenetics. 2001 Feb;11(1):77–84. doi: 10.1097/00008571-200102000-00009. [DOI] [PubMed] [Google Scholar]
  8. Brophy V. H., Jampsa R. L., Clendenning J. B., McKinstry L. A., Jarvik G. P., Furlong C. E. Effects of 5' regulatory-region polymorphisms on paraoxonase-gene (PON1) expression. Am J Hum Genet. 2001 May 2;68(6):1428–1436. doi: 10.1086/320600. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chanda S. M., Pope C. N. Neurochemical and neurobehavioral effects of repeated gestational exposure to chlorpyrifos in maternal and developing rats. Pharmacol Biochem Behav. 1996 Apr;53(4):771–776. doi: 10.1016/0091-3057(95)02105-1. [DOI] [PubMed] [Google Scholar]
  10. Clendenning J. B., Humbert R., Green E. D., Wood C., Traver D., Furlong C. E. Structural organization of the human PON1 gene. Genomics. 1996 Aug 1;35(3):586–589. doi: 10.1006/geno.1996.0401. [DOI] [PubMed] [Google Scholar]
  11. Costa L. G., Li W. F., Richter R. J., Shih D. M., Lusis A., Furlong C. E. The role of paraoxonase (PON1) in the detoxication of organophosphates and its human polymorphism. Chem Biol Interact. 1999 May 14;119-120:429–438. doi: 10.1016/s0009-2797(99)00055-1. [DOI] [PubMed] [Google Scholar]
  12. Costa L. G., McDonald B. E., Murphy S. D., Omenn G. S., Richter R. J., Motulsky A. G., Furlong C. E. Serum paraoxonase and its influence on paraoxon and chlorpyrifos-oxon toxicity in rats. Toxicol Appl Pharmacol. 1990 Mar 15;103(1):66–76. doi: 10.1016/0041-008x(90)90263-t. [DOI] [PubMed] [Google Scholar]
  13. Davies H. G., Richter R. J., Keifer M., Broomfield C. A., Sowalla J., Furlong C. E. The effect of the human serum paraoxonase polymorphism is reversed with diazoxon, soman and sarin. Nat Genet. 1996 Nov;14(3):334–336. doi: 10.1038/ng1196-334. [DOI] [PubMed] [Google Scholar]
  14. Dunning A. M., Durocher F., Healey C. S., Teare M. D., McBride S. E., Carlomagno F., Xu C. F., Dawson E., Rhodes S., Ueda S. The extent of linkage disequilibrium in four populations with distinct demographic histories. Am J Hum Genet. 2000 Nov 14;67(6):1544–1554. doi: 10.1086/316906. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Furlong C. E., Li W. F., Richter R. J., Shih D. M., Lusis A. J., Alleva E., Costa L. G. Genetic and temporal determinants of pesticide sensitivity: role of paraoxonase (PON1). Neurotoxicology. 2000 Feb-Apr;21(1-2):91–100. [PubMed] [Google Scholar]
  16. Furlong C. E., Richter R. J., Seidel S. L., Costa L. G., Motulsky A. G. Spectrophotometric assays for the enzymatic hydrolysis of the active metabolites of chlorpyrifos and parathion by plasma paraoxonase/arylesterase. Anal Biochem. 1989 Aug 1;180(2):242–247. doi: 10.1016/0003-2697(89)90424-7. [DOI] [PubMed] [Google Scholar]
  17. Gan K. N., Smolen A., Eckerson H. W., La Du B. N. Purification of human serum paraoxonase/arylesterase. Evidence for one esterase catalyzing both activities. Drug Metab Dispos. 1991 Jan-Feb;19(1):100–106. [PubMed] [Google Scholar]
  18. Garin M. C., James R. W., Dussoix P., Blanché H., Passa P., Froguel P., Ruiz J. Paraoxonase polymorphism Met-Leu54 is associated with modified serum concentrations of the enzyme. A possible link between the paraoxonase gene and increased risk of cardiovascular disease in diabetes. J Clin Invest. 1997 Jan 1;99(1):62–66. doi: 10.1172/JCI119134. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Germer S., Higuchi R. Single-tube genotyping without oligonucleotide probes. Genome Res. 1999 Jan;9(1):72–78. [PMC free article] [PubMed] [Google Scholar]
  20. Humbert R., Adler D. A., Disteche C. M., Hassett C., Omiecinski C. J., Furlong C. E. The molecular basis of the human serum paraoxonase activity polymorphism. Nat Genet. 1993 Jan;3(1):73–76. doi: 10.1038/ng0193-73. [DOI] [PubMed] [Google Scholar]
  21. Imai Y., Morita H., Kurihara H., Sugiyama T., Kato N., Ebihara A., Hamada C., Kurihara Y., Shindo T., Oh-hashi Y. Evidence for association between paraoxonase gene polymorphisms and atherosclerotic diseases. Atherosclerosis. 2000 Apr;149(2):435–442. doi: 10.1016/s0021-9150(99)00340-8. [DOI] [PubMed] [Google Scholar]
  22. Leviev I., Deakin S., James R. W. Decreased stability of the M54 isoform of paraoxonase as a contributory factor to variations in human serum paraoxonase concentrations. J Lipid Res. 2001 Apr;42(4):528–535. [PubMed] [Google Scholar]
  23. Leviev I., James R. W. Promoter polymorphisms of human paraoxonase PON1 gene and serum paraoxonase activities and concentrations. Arterioscler Thromb Vasc Biol. 2000 Feb;20(2):516–521. doi: 10.1161/01.atv.20.2.516. [DOI] [PubMed] [Google Scholar]
  24. Lewontin R. C. On measures of gametic disequilibrium. Genetics. 1988 Nov;120(3):849–852. doi: 10.1093/genetics/120.3.849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Li W. F., Costa L. G., Richter R. J., Hagen T., Shih D. M., Tward A., Lusis A. J., Furlong C. E. Catalytic efficiency determines the in-vivo efficacy of PON1 for detoxifying organophosphorus compounds. Pharmacogenetics. 2000 Dec;10(9):767–779. doi: 10.1097/00008571-200012000-00002. [DOI] [PubMed] [Google Scholar]
  26. Mackness B., Durrington P. N., Mackness M. I. Polymorphisms of paraoxonase genes and low-density lipoprotein lipid peroxidation. Lancet. 1999 Feb 6;353(9151):468–469. doi: 10.1016/S0140-6736(98)05105-8. [DOI] [PubMed] [Google Scholar]
  27. Malin R., Laine S., Rantalaiho V., Wirta O., Pasternack A., Jokela H., Alho H., Koivula T., Lehtimäki T. Lipid peroxidation is increased in paraoxonase L55 homozygotes compared with M-allele carriers. Free Radic Res. 2001 May;34(5):477–484. doi: 10.1080/10715760100300421. [DOI] [PubMed] [Google Scholar]
  28. Mueller R. F., Hornung S., Furlong C. E., Anderson J., Giblett E. R., Motulsky A. G. Plasma paraoxonase polymorphism: a new enzyme assay, population, family, biochemical, and linkage studies. Am J Hum Genet. 1983 May;35(3):393–408. [PMC free article] [PubMed] [Google Scholar]
  29. Primo-Parmo S. L., Sorenson R. C., Teiber J., La Du B. N. The human serum paraoxonase/arylesterase gene (PON1) is one member of a multigene family. Genomics. 1996 May 1;33(3):498–507. doi: 10.1006/geno.1996.0225. [DOI] [PubMed] [Google Scholar]
  30. Reich D. E., Cargill M., Bolk S., Ireland J., Sabeti P. C., Richter D. J., Lavery T., Kouyoumjian R., Farhadian S. F., Ward R. Linkage disequilibrium in the human genome. Nature. 2001 May 10;411(6834):199–204. doi: 10.1038/35075590. [DOI] [PubMed] [Google Scholar]
  31. Roy A. C., Loke D. F., Saha N., Viegas O. A., Tay J. S., Ratnam S. S. Interrelationships of serum paraoxonase, serum lipids and apolipoproteins in normal pregnancy. A longitudinal study. Gynecol Obstet Invest. 1994;38(1):10–13. doi: 10.1159/000292435. [DOI] [PubMed] [Google Scholar]
  32. Sams C., Mason H. J., Rawbone R. Evidence for the activation of organophosphate pesticides by cytochromes P450 3A4 and 2D6 in human liver microsomes. Toxicol Lett. 2000 Aug 16;116(3):217–221. doi: 10.1016/s0378-4274(00)00221-6. [DOI] [PubMed] [Google Scholar]
  33. Sanghera D. K., Aston C. E., Saha N., Kamboh M. I. DNA polymorphisms in two paraoxonase genes (PON1 and PON2) are associated with the risk of coronary heart disease. Am J Hum Genet. 1998 Jan;62(1):36–44. doi: 10.1086/301669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Shih D. M., Gu L., Xia Y. R., Navab M., Li W. F., Hama S., Castellani L. W., Furlong C. E., Costa L. G., Fogelman A. M. Mice lacking serum paraoxonase are susceptible to organophosphate toxicity and atherosclerosis. Nature. 1998 Jul 16;394(6690):284–287. doi: 10.1038/28406. [DOI] [PubMed] [Google Scholar]
  35. Slatkin M. Disequilibrium mapping of a quantitative-trait locus in an expanding population. Am J Hum Genet. 1999 Jun;64(6):1764–1772. doi: 10.1086/302413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Smolen A., Eckerson H. W., Gan K. N., Hailat N., La Du B. N. Characteristics of the genetically determined allozymic forms of human serum paraoxonase/arylesterase. Drug Metab Dispos. 1991 Jan-Feb;19(1):107–112. [PubMed] [Google Scholar]
  37. Taillon-Miller P., Bauer-Sardiña I., Saccone N. L., Putzel J., Laitinen T., Cao A., Kere J., Pilia G., Rice J. P., Kwok P. Y. Juxtaposed regions of extensive and minimal linkage disequilibrium in human Xq25 and Xq28. Nat Genet. 2000 Jul;25(3):324–328. doi: 10.1038/77100. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES