Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2003 Aug;111(11):1411–1420. doi: 10.1289/ehp.6164

Mechanisms of benzene-induced hematotoxicity and leukemogenicity: cDNA microarray analyses using mouse bone marrow tissue.

Byung-Il Yoon 1, Guang-Xun Li 1, Kunio Kitada 1, Yasushi Kawasaki 1, Katsuhide Igarashi 1, Yukio Kodama 1, Tomoaki Inoue 1, Kazuko Kobayashi 1, Jun Kanno 1, Dae-Yong Kim 1, Tohru Inoue 1, Yoko Hirabayashi 1
PMCID: PMC1241634  PMID: 12928149

Abstract

Although the mechanisms underlying benzene-induced toxicity and leukemogenicity are not yet fully understood, they are likely to be complicated by various pathways, including those of metabolism, growth factor regulation, oxidative stress, DNA damage, cell cycle regulation, and programmed cell death. With this as a background, we performed cDNA microarray analyses on mouse bone marrow tissue during and after a 2-week benzene exposure by inhalation. Our goal was to clarify the mechanisms underlying the hematotoxicity and leukemogenicity induced by benzene at the level of altered multigene expression. Because a few researchers have postulated that the cell cycle regulation mediated by p53 is a critical event for benzene-induced hematotoxicity, the present study was carried out using p53-knockout (KO) mice and C57BL/6 mice. On the basis of the results of large-scale gene expression studies, we conclude the following: (a) Benzene induces DNA damage in cells at any phase of the cell cycle through myeloperoxidase and in the redox cycle, resulting in p53 expression through Raf-1 and cyclin D-interacting myb-like protein 1. (b) For G1/S cell cycle arrest, the p53-mediated pathway through p21 is involved, as well as the pRb gene-mediated pathway. (c) Alteration of cyclin G1 and Wee-1 kinase genes may be related to the G2/M arrest induced by benzene exposure. (d) DNA repair genes such as Rad50 and Rad51 are markedly downregulated in p53-KO mice. (e) p53-mediated caspase 11 activation, aside from p53-mediated Bax gene induction, may be an important pathway for cellular apoptosis after benzene exposure. Our results strongly suggest that the dysfunction of the p53 gene, possibly caused by strong and repeated genetic and epigenetic effects of benzene on candidate leukemia cells, may induce fatal problems such as those of cell cycle checkpoint, apoptosis, and the DNA repair system, finally resulting in hemopoietic malignancies. Our cDNA microarray data provide valuable information for future investigations of the mechanisms underlying the toxicity and leukemogenicity of benzene.

Full Text

The Full Text of this article is available as a PDF (662.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aksoy M., Erdem S., DinCol G. Leukemia in shoe-workers exposed chronically to benzene. Blood. 1974 Dec;44(6):837–841. [PubMed] [Google Scholar]
  2. Bartosiewicz M. J., Jenkins D., Penn S., Emery J., Buckpitt A. Unique gene expression patterns in liver and kidney associated with exposure to chemical toxicants. J Pharmacol Exp Ther. 2001 Jun;297(3):895–905. [PubMed] [Google Scholar]
  3. Bernauer U., Vieth B., Ellrich R., Heinrich-Hirsch B., Jänig G. R., Gundert-Remy U. CYP2E1-dependent benzene toxicity: the role of extrahepatic benzene metabolism. Arch Toxicol. 1999 Jun-Jul;73(4-5):189–196. doi: 10.1007/s002040050605. [DOI] [PubMed] [Google Scholar]
  4. Boley Scott E., Wong Victoria A., French John E., Recio Leslie. p53 heterozygosity alters the mRNA expression of p53 target genes in the bone marrow in response to inhaled benzene. Toxicol Sci. 2002 Apr;66(2):209–215. doi: 10.1093/toxsci/66.2.209. [DOI] [PubMed] [Google Scholar]
  5. Brazma A., Hingamp P., Quackenbush J., Sherlock G., Spellman P., Stoeckert C., Aach J., Ansorge W., Ball C. A., Causton H. C. Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nat Genet. 2001 Dec;29(4):365–371. doi: 10.1038/ng1201-365. [DOI] [PubMed] [Google Scholar]
  6. Brewer J. W., Diehl J. A. PERK mediates cell-cycle exit during the mammalian unfolded protein response. Proc Natl Acad Sci U S A. 2000 Nov 7;97(23):12625–12630. doi: 10.1073/pnas.220247197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chandel N. S., Vander Heiden M. G., Thompson C. B., Schumacker P. T. Redox regulation of p53 during hypoxia. Oncogene. 2000 Aug 10;19(34):3840–3848. doi: 10.1038/sj.onc.1203727. [DOI] [PubMed] [Google Scholar]
  8. Chen H., Eastmond D. A. Synergistic increase in chromosomal breakage within the euchromatin induced by an interaction of the benzene metabolites phenol and hydroquinone in mice. Carcinogenesis. 1995 Aug;16(8):1963–1969. doi: 10.1093/carcin/16.8.1963. [DOI] [PubMed] [Google Scholar]
  9. Choi Y. J., Mendoza L., Rha S. J., Sheikh-Hamad D., Baranowska-Daca E., Nguyen V., Smith C. W., Nassar G., Suki W. N., Truong L. D. Role of p53-dependent activation of caspases in chronic obstructive uropathy: evidence from p53 null mutant mice. J Am Soc Nephrol. 2001 May;12(5):983–992. doi: 10.1681/ASN.V125983. [DOI] [PubMed] [Google Scholar]
  10. Cronkite E. P., Bullis J., Inoue T., Drew R. T. Benzene inhalation produces leukemia in mice. Toxicol Appl Pharmacol. 1984 Sep 15;75(2):358–361. doi: 10.1016/0041-008x(84)90219-9. [DOI] [PubMed] [Google Scholar]
  11. Cronkite E. P., Drew R. T., Inoue T., Hirabayashi Y., Bullis J. E. Hematotoxicity and carcinogenicity of inhaled benzene. Environ Health Perspect. 1989 Jul;82:97–108. doi: 10.1289/ehp.898297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Dean B. J. Recent findings on the genetic toxicology of benzene, toluene, xylenes and phenols. Mutat Res. 1985 Nov;154(3):153–181. doi: 10.1016/0165-1110(85)90016-8. [DOI] [PubMed] [Google Scholar]
  13. Eastmond D. A., Smith M. T., Irons R. D. An interaction of benzene metabolites reproduces the myelotoxicity observed with benzene exposure. Toxicol Appl Pharmacol. 1987 Oct;91(1):85–95. doi: 10.1016/0041-008x(87)90196-7. [DOI] [PubMed] [Google Scholar]
  14. Farris G. M., Robinson S. N., Gaido K. W., Wong B. A., Wong V. A., Hahn W. P., Shah R. S. Benzene-induced hematotoxicity and bone marrow compensation in B6C3F1 mice. Fundam Appl Toxicol. 1997 Apr;36(2):119–129. doi: 10.1006/faat.1997.2293. [DOI] [PubMed] [Google Scholar]
  15. Gao X., Pan D. TSC1 and TSC2 tumor suppressors antagonize insulin signaling in cell growth. Genes Dev. 2001 Jun 1;15(11):1383–1392. doi: 10.1101/gad.901101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gombart Adrian F., Kwok Scott H., Anderson Karen L., Yamaguchi Yuji, Torbett Bruce E., Koeffler H. Phillip. Regulation of neutrophil and eosinophil secondary granule gene expression by transcription factors C/EBP epsilon and PU.1. Blood. 2002 Dec 19;101(8):3265–3273. doi: 10.1182/blood-2002-04-1039. [DOI] [PubMed] [Google Scholar]
  17. Gut I., Nedelcheva V., Soucek P., Stopka P., Vodicka P., Gelboin H. V., Ingelman-Sundberg M. The role of CYP2E1 and 2B1 in metabolic activation of benzene derivatives. Arch Toxicol. 1996;71(1-2):45–56. doi: 10.1007/s002040050357. [DOI] [PubMed] [Google Scholar]
  18. Healy L. N., Pluta L. J., James R. A., Janszen D. B., Torous D., French J. E., Recio L. Induction and time-dependent accumulation of micronuclei in peripheral blood of transgenic p53+/- mice, Tg.AC (v-Ha-ras) and parental wild-type (C57BL/6 and FVB/N) mice exposed to benzene by inhalation. Mutagenesis. 2001 Mar;16(2):163–168. doi: 10.1093/mutage/16.2.163. [DOI] [PubMed] [Google Scholar]
  19. Henderson R. F. Species differences in the metabolism of benzene. Environ Health Perspect. 1996 Dec;104 (Suppl 6):1173–1175. doi: 10.1289/ehp.961041173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Ho T. Y., Witz G. Increased gene expression in human promyeloid leukemia cells exposed to trans,trans-muconaldehyde, a hematotoxic benzene metabolite. Carcinogenesis. 1997 Apr;18(4):739–744. doi: 10.1093/carcin/18.4.739. [DOI] [PubMed] [Google Scholar]
  21. Huff J. E., Haseman J. K., DeMarini D. M., Eustis S., Maronpot R. R., Peters A. C., Persing R. L., Chrisp C. E., Jacobs A. C. Multiple-site carcinogenicity of benzene in Fischer 344 rats and B6C3F1 mice. Environ Health Perspect. 1989 Jul;82:125–163. doi: 10.1289/ehp.8982125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Imamura T., Takase M., Nishihara A., Oeda E., Hanai J., Kawabata M., Miyazono K. Smad6 inhibits signalling by the TGF-beta superfamily. Nature. 1997 Oct 9;389(6651):622–626. doi: 10.1038/39355. [DOI] [PubMed] [Google Scholar]
  23. Jessen Bart A., Stevens Greg J. Expression profiling during adipocyte differentiation of 3T3-L1 fibroblasts. Gene. 2002 Oct 16;299(1-2):95–100. doi: 10.1016/s0378-1119(02)01017-x. [DOI] [PubMed] [Google Scholar]
  24. Kang S. J., Wang S., Hara H., Peterson E. P., Namura S., Amin-Hanjani S., Huang Z., Srinivasan A., Tomaselli K. J., Thornberry N. A. Dual role of caspase-11 in mediating activation of caspase-1 and caspase-3 under pathological conditions. J Cell Biol. 2000 May 1;149(3):613–622. doi: 10.1083/jcb.149.3.613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Kimura S. H., Ikawa M., Ito A., Okabe M., Nojima H. Cyclin G1 is involved in G2/M arrest in response to DNA damage and in growth control after damage recovery. Oncogene. 2001 May 31;20(25):3290–3300. doi: 10.1038/sj.onc.1204270. [DOI] [PubMed] [Google Scholar]
  26. Kolachana P., Subrahmanyam V. V., Meyer K. B., Zhang L., Smith M. T. Benzene and its phenolic metabolites produce oxidative DNA damage in HL60 cells in vitro and in the bone marrow in vivo. Cancer Res. 1993 Mar 1;53(5):1023–1026. [PubMed] [Google Scholar]
  27. Laskin D. L., Heck D. E., Punjabi C. J., Laskin J. D. Role of nitric oxide in hematosuppression and benzene-induced toxicity. Environ Health Perspect. 1996 Dec;104 (Suppl 6):1283–1287. doi: 10.1289/ehp.961041283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Lau S. S., Monks T. J., Everitt J. I., Kleymenova E., Walker C. L. Carcinogenicity of a nephrotoxic metabolite of the "nongenotoxic" carcinogen hydroquinone. Chem Res Toxicol. 2001 Jan;14(1):25–33. doi: 10.1021/tx000161g. [DOI] [PubMed] [Google Scholar]
  29. Lee E. W., Garner C. D. Effects of benzene on DNA strand breaks in vivo versus benzene metabolite-induced DNA strand breaks in vitro in mouse bone marrow cells. Toxicol Appl Pharmacol. 1991 May;108(3):497–508. doi: 10.1016/0041-008x(91)90096-w. [DOI] [PubMed] [Google Scholar]
  30. Maltoni C., Ciliberti A., Cotti G., Conti B., Belpoggi F. Benzene, an experimental multipotential carcinogen: results of the long-term bioassays performed at the Bologna Institute of Oncology. Environ Health Perspect. 1989 Jul;82:109–124. doi: 10.1289/ehp.8982109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Moran J. L., Siegel D., Sun X. M., Ross D. Induction of apoptosis by benzene metabolites in HL60 and CD34+ human bone marrow progenitor cells. Mol Pharmacol. 1996 Sep;50(3):610–615. [PubMed] [Google Scholar]
  32. Méplan C., Richard M. J., Hainaut P. Metalloregulation of the tumor suppressor protein p53: zinc mediates the renaturation of p53 after exposure to metal chelators in vitro and in intact cells. Oncogene. 2000 Nov 2;19(46):5227–5236. doi: 10.1038/sj.onc.1203907. [DOI] [PubMed] [Google Scholar]
  33. Niculescu R., Bradford H. N., Colman R. W., Kalf G. F. Inhibition of the conversion of pre-interleukins-1 alpha and 1 beta to mature cytokines by p-benzoquinone, a metabolite of benzene. Chem Biol Interact. 1995 Dec 22;98(3):211–222. doi: 10.1016/0009-2797(95)03647-4. [DOI] [PubMed] [Google Scholar]
  34. Ohta Hideaki, Sawada Akihisa, Kim Ji Yoo, Tokimasa Sadao, Nishiguchi Seiji, Humphries R. Keith, Hara Junichi, Takihara Yoshihiro. Polycomb group gene rae28 is required for sustaining activity of hematopoietic stem cells. J Exp Med. 2002 Mar 18;195(6):759–770. doi: 10.1084/jem.20011911. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Potter Christopher J., Pedraza Laura G., Xu Tian. Akt regulates growth by directly phosphorylating Tsc2. Nat Cell Biol. 2002 Sep;4(9):658–665. doi: 10.1038/ncb840. [DOI] [PubMed] [Google Scholar]
  36. Reya T., O'Riordan M., Okamura R., Devaney E., Willert K., Nusse R., Grosschedl R. Wnt signaling regulates B lymphocyte proliferation through a LEF-1 dependent mechanism. Immunity. 2000 Jul;13(1):15–24. doi: 10.1016/s1074-7613(00)00004-2. [DOI] [PubMed] [Google Scholar]
  37. Ross D., Siegel D., Schattenberg D. G., Sun X. M., Moran J. L. Cell-specific activation and detoxification of benzene metabolites in mouse and human bone marrow: identification of target cells and a potential role for modulation of apoptosis in benzene toxicity. Environ Health Perspect. 1996 Dec;104 (Suppl 6):1177–1182. doi: 10.1289/ehp.961041177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Ross D. The role of metabolism and specific metabolites in benzene-induced toxicity: evidence and issues. J Toxicol Environ Health A. 2000 Nov;61(5-6):357–372. doi: 10.1080/00984100050166361. [DOI] [PubMed] [Google Scholar]
  39. Schattenberg D. G., Stillman W. S., Gruntmeir J. J., Helm K. M., Irons R. D., Ross D. Peroxidase activity in murine and human hematopoietic progenitor cells: potential relevance to benzene-induced toxicity. Mol Pharmacol. 1994 Aug;46(2):346–351. [PubMed] [Google Scholar]
  40. Schlosser M. J., Shurina R. D., Kalf G. F. Metabolism of phenol and hydroquinone to reactive products by macrophage peroxidase or purified prostaglandin H synthase. Environ Health Perspect. 1989 Jul;82:229–237. doi: 10.1289/ehp.8982229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Schrenk D., Orzechowski A., Schwarz L. R., Snyder R., Burchell B., Ingelman-Sundberg M., Bock K. W. Phase II metabolism of benzene. Environ Health Perspect. 1996 Dec;104 (Suppl 6):1183–1188. doi: 10.1289/ehp.961041183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Seol D. W., Billiar T. R. A caspase-9 variant missing the catalytic site is an endogenous inhibitor of apoptosis. J Biol Chem. 1999 Jan 22;274(4):2072–2076. doi: 10.1074/jbc.274.4.2072. [DOI] [PubMed] [Google Scholar]
  43. Smith M. T., Yager J. W., Steinmetz K. L., Eastmond D. A. Peroxidase-dependent metabolism of benzene's phenolic metabolites and its potential role in benzene toxicity and carcinogenicity. Environ Health Perspect. 1989 Jul;82:23–29. doi: 10.1289/ehp.898223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Snyder C. A., Goldstein B. D., Sellakumar A. R., Bromberg I., Laskin S., Albert R. E. The inhalation toxicology of benzene: incidence of hematopoietic neoplasms and hematotoxicity in ARK/J and C57BL/6J mice. Toxicol Appl Pharmacol. 1980 Jun 30;54(2):323–331. doi: 10.1016/0041-008x(80)90202-1. [DOI] [PubMed] [Google Scholar]
  45. Snyder R., Hedli C. C. An overview of benzene metabolism. Environ Health Perspect. 1996 Dec;104 (Suppl 6):1165–1171. doi: 10.1289/ehp.961041165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Snyder R., Kalf G. F. A perspective on benzene leukemogenesis. Crit Rev Toxicol. 1994;24(3):177–209. doi: 10.3109/10408449409021605. [DOI] [PubMed] [Google Scholar]
  47. Subrahmanyam V. V., Doane-Setzer P., Steinmetz K. L., Ross D., Smith M. T. Phenol-induced stimulation of hydroquinone bioactivation in mouse bone marrow in vivo: possible implications in benzene myelotoxicity. Toxicology. 1990 May 14;62(1):107–116. doi: 10.1016/0300-483x(90)90035-f. [DOI] [PubMed] [Google Scholar]
  48. Subrahmanyam V. V., Ross D., Eastmond D. A., Smith M. T. Potential role of free radicals in benzene-induced myelotoxicity and leukemia. Free Radic Biol Med. 1991;11(5):495–515. doi: 10.1016/0891-5849(91)90063-9. [DOI] [PubMed] [Google Scholar]
  49. Tsukada T., Tomooka Y., Takai S., Ueda Y., Nishikawa S., Yagi T., Tokunaga T., Takeda N., Suda Y., Abe S. Enhanced proliferative potential in culture of cells from p53-deficient mice. Oncogene. 1993 Dec;8(12):3313–3322. [PubMed] [Google Scholar]
  50. Valentine J. L., Lee S. S., Seaton M. J., Asgharian B., Farris G., Corton J. C., Gonzalez F. J., Medinsky M. A. Reduction of benzene metabolism and toxicity in mice that lack CYP2E1 expression. Toxicol Appl Pharmacol. 1996 Nov;141(1):205–213. doi: 10.1006/taap.1996.0277. [DOI] [PubMed] [Google Scholar]
  51. Vigliani E. C., Forni A. Benzene and leukemia. Environ Res. 1976 Feb;11(1):122–127. doi: 10.1016/0013-9351(76)90115-8. [DOI] [PubMed] [Google Scholar]
  52. Ward Irene M., Minn Kay, van Deursen Jan, Chen Junjie. p53 Binding protein 53BP1 is required for DNA damage responses and tumor suppression in mice. Mol Cell Biol. 2003 Apr;23(7):2556–2563. doi: 10.1128/MCB.23.7.2556-2563.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Wolman S. R. Cytologic and cytogenetic effects of benzene. J Toxicol Environ Health Suppl. 1977;2:63–68. [PubMed] [Google Scholar]
  54. Yager J. W., Eastmond D. A., Robertson M. L., Paradisin W. M., Smith M. T. Characterization of micronuclei induced in human lymphocytes by benzene metabolites. Cancer Res. 1990 Jan 15;50(2):393–399. [PubMed] [Google Scholar]
  55. Yoon B. I., Hirabayashi Y., Kaneko T., Kodama Y., Kanno J., Yodoi J., Kim D. Y., Inoue T. Transgene expression of thioredoxin (TRX/ADF) protects against 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced hematotoxicity. Arch Environ Contam Toxicol. 2001 Aug;41(2):232–236. doi: 10.1007/s002440010242. [DOI] [PubMed] [Google Scholar]
  56. Yoon B. I., Hirabayashi Y., Kawasaki Y., Kodama Y., Kaneko T., Kim D. Y., Inoue T. Mechanism of action of benzene toxicity: cell cycle suppression in hemopoietic progenitor cells (CFU-GM). Exp Hematol. 2001 Mar;29(3):278–285. doi: 10.1016/s0301-472x(00)00671-8. [DOI] [PubMed] [Google Scholar]
  57. Yoon Byung-Il, Hirabayashi Yoko, Kawasaki Yasushi, Kodama Yukio, Kaneko Toyozo, Kanno Jun, Kim Dae-Yong, Fujii-Kuriyama Yoshiaki, Inoue Tohru. Aryl hydrocarbon receptor mediates benzene-induced hematotoxicity. Toxicol Sci. 2002 Nov;70(1):150–156. doi: 10.1093/toxsci/70.1.150. [DOI] [PubMed] [Google Scholar]
  58. Zhang Shuxin, Cawley George F., Eyer Charles S., Backes Wayne L. Altered ethylbenzene-mediated hepatic CYP2E1 expression in growth hormone-deficient dwarf rats. Toxicol Appl Pharmacol. 2002 Mar 1;179(2):74–82. doi: 10.1006/taap.2002.9349. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES