Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2003 Sep;111(12):1478–1484. doi: 10.1289/ehp.6417

Semen quality in relation to biomarkers of pesticide exposure.

Shanna H Swan 1, Robin L Kruse 1, Fan Liu 1, Dana B Barr 1, Erma Z Drobnis 1, J Bruce Redmon 1, Christina Wang 1, Charlene Brazil 1, James W Overstreet 1; Study for Future Families Research Group1
PMCID: PMC1241650  PMID: 12948887

Abstract

We previously reported reduced sperm concentration and motility in fertile men in a U.S. agrarian area (Columbia, MO) relative to men from U.S. urban centers (Minneapolis, MN; Los Angeles, CA; New York, NY). In the present study we address the hypothesis that pesticides currently used in agriculture in the Midwest contributed to these differences in semen quality. We selected men in whom all semen parameters (concentration, percentage sperm with normal morphology, and percentage motile sperm) were low (cases) and men in whom all semen parameters were within normal limits (controls) within Missouri and Minnesota (sample sizes of 50 and 36, respectively) and measured metabolites of eight current-use pesticides in urine samples provided at the time of semen collection. All pesticide analyses were conducted blind with respect to center and case-control status. Pesticide metabolite levels were elevated in Missouri cases, compared with controls, for the herbicides alachlor and atrazine and for the insecticide diazinon [2-isopropoxy-4-methyl-pyrimidinol (IMPY)]; for Wilcoxon rank test, p = 0.0007, 0.012, and 0.0004 for alachlor, atrazine, and IMPY, respectively. Men from Missouri with high levels of alachlor or IMPY were significantly more likely to be cases than were men with low levels [odds ratios (ORs) = 30.0 and 16.7 for alachlor and IMPY, respectively], as were men with atrazine levels higher than the limit of detection (OR = 11.3). The herbicides 2,4-D (2,4-dichlorophenoxyacetic acid) and metolachlor were also associated with poor semen quality in some analyses, whereas acetochlor levels were lower in cases than in controls (p = 0.04). No significant associations were seen for any pesticides within Minnesota, where levels of agricultural pesticides were low, or for the insect repellent DEET (N,N-diethyl-m-toluamide) or the malathion metabolite malathion dicarboxylic acid. These associations between current-use pesticides and reduced semen quality suggest that agricultural chemicals may have contributed to the reduction in semen quality in fertile men from mid-Missouri we reported previously.

Full Text

The Full Text of this article is available as a PDF (152.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abell A., Ernst E., Bonde J. P. Semen quality and sexual hormones in greenhouse workers. Scand J Work Environ Health. 2000 Dec;26(6):492–500. doi: 10.5271/sjweh.573. [DOI] [PubMed] [Google Scholar]
  2. Beeson M. D., Driskell W. J., Barr D. B. Isotope dilution high-performance liquid chromatography/tandem mass spectrometry method for quantifying urinary metabolites of atrazine, malathion, and 2,4-dichlorophenoxyacetic acid. Anal Chem. 1999 Aug 15;71(16):3526–3530. doi: 10.1021/ac990130u. [DOI] [PubMed] [Google Scholar]
  3. Carlsen E., Giwercman A., Keiding N., Skakkebaek N. E. Evidence for decreasing quality of semen during past 50 years. BMJ. 1992 Sep 12;305(6854):609–613. doi: 10.1136/bmj.305.6854.609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ekbom A., Hsieh C. C., Lipworth L., Wolk A., Pontén J., Adami H. O., Trichopoulos D. Perinatal characteristics in relation to incidence of and mortality from prostate cancer. BMJ. 1996 Aug 10;313(7053):337–341. doi: 10.1136/bmj.313.7053.337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Faroon O., Kueberuwa S., Smith L., DeRosa C. ATSDR evaluation of health effects of chemicals. II. Mirex and chlordecone: health effects, toxicokinetics, human exposure, and environmental fate. Toxicol Ind Health. 1995;11(6):1–203. doi: 10.1177/074823379501100601. [DOI] [PubMed] [Google Scholar]
  6. Goldsmith J. R. Dibromochloropropane: epidemiological findings and current questions. Ann N Y Acad Sci. 1997 Dec 26;837:300–306. doi: 10.1111/j.1749-6632.1997.tb56882.x. [DOI] [PubMed] [Google Scholar]
  7. Guzick D. S., Overstreet J. W., Factor-Litvak P., Brazil C. K., Nakajima S. T., Coutifaris C., Carson S. A., Cisneros P., Steinkampf M. P., Hill J. A. Sperm morphology, motility, and concentration in fertile and infertile men. N Engl J Med. 2001 Nov 8;345(19):1388–1393. doi: 10.1056/NEJMoa003005. [DOI] [PubMed] [Google Scholar]
  8. Hauser Russ, Altshul Larisa, Chen Zuying, Ryan Louise, Overstreet James, Schiff Isaac, Christiani David C. Environmental organochlorines and semen quality: results of a pilot study. Environ Health Perspect. 2002 Mar;110(3):229–233. doi: 10.1289/ehp.02110229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hayes Tyrone B., Collins Atif, Lee Melissa, Mendoza Magdelena, Noriega Nigel, Stuart A. Ali, Vonk Aaron. Hermaphroditic, demasculinized frogs after exposure to the herbicide atrazine at low ecologically relevant doses. Proc Natl Acad Sci U S A. 2002 Apr 16;99(8):5476–5480. doi: 10.1073/pnas.082121499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hill R. H., Jr, Shealy D. B., Head S. L., Williams C. C., Bailey S. L., Gregg M., Baker S. E., Needham L. L. Determination of pesticide metabolites in human urine using an isotope dilution technique and tandem mass spectrometry. J Anal Toxicol. 1995 Sep;19(5):323–329. doi: 10.1093/jat/19.5.323. [DOI] [PubMed] [Google Scholar]
  11. Jorgenson J. L. Aldrin and dieldrin: a review of research on their production, environmental deposition and fate, bioaccumulation, toxicology, and epidemiology in the United States. Environ Health Perspect. 2001 Mar;109 (Suppl 1):113–139. doi: 10.1289/ehp.01109s1113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Jørgensen N., Andersen A. G., Eustache F., Irvine D. S., Suominen J., Petersen J. H., Andersen A. N., Auger J., Cawood E. H., Horte A. Regional differences in semen quality in Europe. Hum Reprod. 2001 May;16(5):1012–1019. doi: 10.1093/humrep/16.5.1012. [DOI] [PubMed] [Google Scholar]
  13. Kniewald J., Osredecki V., Gojmerac T., Zechner V., Kniewald Z. Effect of s-triazine compounds on testosterone metabolism in the rat prostate. J Appl Toxicol. 1995 May-Jun;15(3):215–218. doi: 10.1002/jat.2550150312. [DOI] [PubMed] [Google Scholar]
  14. Konda L. N., Pásztor Z. Environmental distribution of acetochlor, atrazine, chlorpyrifos, and propisochlor under field conditions. J Agric Food Chem. 2001 Aug;49(8):3859–3863. doi: 10.1021/jf010187t. [DOI] [PubMed] [Google Scholar]
  15. Lerda D., Rizzi R. Study of reproductive function in persons occupationally exposed to 2,4-dichlorophenoxyacetic acid (2,4-D). Mutat Res. 1991 Jan;262(1):47–50. doi: 10.1016/0165-7992(91)90105-d. [DOI] [PubMed] [Google Scholar]
  16. Miettinen O. S. Stratification by a multivariate confounder score. Am J Epidemiol. 1976 Dec;104(6):609–620. doi: 10.1093/oxfordjournals.aje.a112339. [DOI] [PubMed] [Google Scholar]
  17. Nelson C. M., Bunge R. G. Semen analysis: evidence for changing parameters of male fertility potential. Fertil Steril. 1974 Jun;25(6):503–507. doi: 10.1016/s0015-0282(16)40454-1. [DOI] [PubMed] [Google Scholar]
  18. Sanderson J. T., Letcher R. J., Heneweer M., Giesy J. P., van den Berg M. Effects of chloro-s-triazine herbicides and metabolites on aromatase activity in various human cell lines and on vitellogenin production in male carp hepatocytes. Environ Health Perspect. 2001 Oct;109(10):1027–1031. doi: 10.1289/ehp.011091027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Schrader S. M., Turner T. W., Ratcliffe J. M. The effects of ethylene dibromide on semen quality: a comparison of short-term and chronic exposure. Reprod Toxicol. 1988;2(3-4):191–198. doi: 10.1016/0890-6238(88)90021-4. [DOI] [PubMed] [Google Scholar]
  20. Slutsky M., Levin J. L., Levy B. S. Azoospermia and oligospermia among a large cohort of DBCP applicators in 12 countries. Int J Occup Environ Health. 1999 Apr-Jun;5(2):116–122. doi: 10.1179/oeh.1999.5.2.116. [DOI] [PubMed] [Google Scholar]
  21. Swan S. H., Elkin E. P., Fenster L. Have sperm densities declined? A reanalysis of global trend data. Environ Health Perspect. 1997 Nov;105(11):1228–1232. doi: 10.1289/ehp.971051228. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Swan Shanna H., Brazil Charlene, Drobnis Erma Z., Liu Fan, Kruse Robin L., Hatch Maureen, Redmon J. Bruce, Wang Christina, Overstreet James W., Study For Future Families Research Group Geographic differences in semen quality of fertile U.S. males. Environ Health Perspect. 2003 Apr;111(4):414–420. doi: 10.1289/ehp.5927. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Tennant M. K., Hill D. S., Eldridge J. C., Wetzel L. T., Breckenridge C. B., Stevens J. T. Possible antiestrogenic properties of chloro-s-triazines in rat uterus. J Toxicol Environ Health. 1994 Oct;43(2):183–196. doi: 10.1080/15287399409531914. [DOI] [PubMed] [Google Scholar]
  24. Thrupp L. A. Sterilization of workers from pesticide exposure: the causes and consequences of DBCP-induced damage in Costa Rica and beyond. Int J Health Serv. 1991;21(4):731–757. doi: 10.2190/25B9-QFMV-Y28P-L736. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES