Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2003 Oct;111(13):1582–1589. doi: 10.1289/ehp.6118

Historical pesticide exposure in California using pesticide use reports and land-use surveys: an assessment of misclassification error and bias.

Rudolph P Rull 1, Beate Ritz 1
PMCID: PMC1241678  PMID: 14527836

Abstract

We used California's Pesticide Use Report (PUR) and land-use survey data to conduct a simulation study evaluating the potential consequences of misclassifying residential exposure from proximity to agricultural pesticide application in health effect studies. We developed a geographic model linking the PUR with crop location data from land-use surveys to assess the impact of exposure misclassification from simpler exposure models based solely on PUR or land-use data. We simulated the random selection of population controls recruited into a hypothetical case-control study within an agricultural region. Using residential parcel data, we derived annual exposure prevalences, sensitivity, and specificity for five pesticides and relied on the PUR plus land-use model as the "gold standard." Based on these estimates, we calculated the attenuation of prespecified true odds ratios (ORs), assuming nondifferential exposure misclassification. True ORs were severely attenuated a) when residential exposure status was based on a larger geographic area yielding higher sensitivity but low specificity for exposure, in contrast to relying on a smaller area and increasing specificity; b) for less frequently applied pesticides; and c) with increasing mobility of residents among the study population. Considerable effect estimate attenuation also occurred when we used residential distance to crops as a proxy for pesticide exposure. Finally, exposure classifications based on annual instead of seasonal summaries of PUR resulted in highly attenuated ORs, especially during seasons when applications of specific pesticides were unlikely to occur. These results underscore the importance of increasing the spatiotemporal resolution of pesticide exposure models to minimize misclassification.

Full Text

The Full Text of this article is available as a PDF (661.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ames R. G., Howd R. A., Doherty L. Community exposure to a paraquat drift. Arch Environ Health. 1993 Jan-Feb;48(1):47–52. doi: 10.1080/00039896.1993.9938392. [DOI] [PubMed] [Google Scholar]
  2. Bell E. M., Hertz-Picciotto I., Beaumont J. J. A case-control study of pesticides and fetal death due to congenital anomalies. Epidemiology. 2001 Mar;12(2):148–156. doi: 10.1097/00001648-200103000-00005. [DOI] [PubMed] [Google Scholar]
  3. Chester G., Ward R. J. Occupational exposure and drift hazard during aerial application of paraquat to cotton. Arch Environ Contam Toxicol. 1984 Sep;13(5):551–563. doi: 10.1007/BF01056333. [DOI] [PubMed] [Google Scholar]
  4. Clary Tim, Ritz Beate. Pancreatic cancer mortality and organochlorine pesticide exposure in California, 1989-1996. Am J Ind Med. 2003 Mar;43(3):306–313. doi: 10.1002/ajim.10188. [DOI] [PubMed] [Google Scholar]
  5. Currier W. W., MacCollom G. B., Baumann G. L. Drift residues of air-applied carbaryl in an orchard environment. J Econ Entomol. 1982 Dec;75(6):1062–1068. doi: 10.1093/jee/75.6.1062. [DOI] [PubMed] [Google Scholar]
  6. Engel L. S., Checkoway H., Keifer M. C., Seixas N. S., Longstreth W. T., Jr, Scott K. C., Hudnell K., Anger W. K., Camicioli R. Parkinsonism and occupational exposure to pesticides. Occup Environ Med. 2001 Sep;58(9):582–589. doi: 10.1136/oem.58.9.582. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gunier R. B., Harnly M. E., Reynolds P., Hertz A., Von Behren J. Agricultural pesticide use in California: pesticide prioritization, use densities, and population distributions for a childhood cancer study. Environ Health Perspect. 2001 Oct;109(10):1071–1078. doi: 10.1289/ehp.011091071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Khoury M. J., Stewart W., Weinstein A., Panny S., Lindsay P., Eisenberg M. Residential mobility during pregnancy: implications for environmental teratogenesis. J Clin Epidemiol. 1988;41(1):15–20. doi: 10.1016/0895-4356(88)90004-2. [DOI] [PubMed] [Google Scholar]
  9. Loewenherz C., Fenske R. A., Simcox N. J., Bellamy G., Kalman D. Biological monitoring of organophosphorus pesticide exposure among children of agricultural workers in central Washington State. Environ Health Perspect. 1997 Dec;105(12):1344–1353. doi: 10.1289/ehp.971051344. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Menzie C. M. Fate of pesticides in the environment. Annu Rev Entomol. 1972;17:199–222. doi: 10.1146/annurev.en.17.010172.001215. [DOI] [PubMed] [Google Scholar]
  11. Mills P. K. Correlation analysis of pesticide use data and cancer incidence rates in California counties. Arch Environ Health. 1998 Nov-Dec;53(6):410–413. doi: 10.1080/00039899809605729. [DOI] [PubMed] [Google Scholar]
  12. Reynolds Peggy, Von Behren Julie, Gunier Robert B., Goldberg Debbie E., Hertz Andrew, Harnly Martha E. Childhood cancer and agricultural pesticide use: an ecologic study in California. Environ Health Perspect. 2002 Mar;110(3):319–324. doi: 10.1289/ehp.02110319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ritz B., Yu F. Parkinson's disease mortality and pesticide exposure in California 1984-1994. Int J Epidemiol. 2000 Apr;29(2):323–329. doi: 10.1093/ije/29.2.323. [DOI] [PubMed] [Google Scholar]
  14. Shaw G. M., Velie E. M., Katz E. A., Morland K. B., Schaffer D. M., Nelson V. Maternal occupational and hobby chemical exposures as risk factors for neural tube defects. Epidemiology. 1999 Mar;10(2):124–129. [PubMed] [Google Scholar]
  15. Thompson W. D., Walter S. D. A reappraisal of the kappa coefficient. J Clin Epidemiol. 1988;41(10):949–958. doi: 10.1016/0895-4356(88)90031-5. [DOI] [PubMed] [Google Scholar]
  16. Ward M. H., Nuckols J. R., Weigel S. J., Maxwell S. K., Cantor K. P., Miller R. S. Identifying populations potentially exposed to agricultural pesticides using remote sensing and a Geographic Information System. Environ Health Perspect. 2000 Jan;108(1):5–12. doi: 10.1289/ehp.001085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Woods N., Craig I. P., Dorr G., Young B. Spray drift of pesticides arising from aerial application in cotton. J Environ Qual. 2001 May-Jun;30(3):697–701. doi: 10.2134/jeq2001.303697x. [DOI] [PubMed] [Google Scholar]
  18. Zahm S. H., Ward M. H., Blair A. Pesticides and cancer. Occup Med. 1997 Apr-Jun;12(2):269–289. [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES