Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2003 Oct;111(13):1595–1600. doi: 10.1289/ehp.6166

Measurement of brevetoxin levels by radioimmunoassay of blood collection cards after acute, long-term, and low-dose exposure in mice.

Ricky Woofter 1, M-Yasmine Bottein Dechraoui 1, Ian Garthwaite 1, Neale R Towers 1, Christopher J Gordon 1, José Córdova 1, John S Ramsdell 1
PMCID: PMC1241680  PMID: 14527838

Abstract

We developed a radioimmunoassay (RIA) using a sheep anti-brevetoxin antiserum to evaluate detection of brevetoxin on blood collection cards from mice treated with the brevetoxin congener PbTx-3. The RIA has high affinity for PbTx-3 [half-maximal effective concentration (EC(50)) +/- SE = 1.2 +/- 0.2 nM; n = 10] and recognizes both type 1 and type 2 brevetoxins, but not ciguatoxin. Direct comparison of the RIA with a radiolabeled [(3)H]-PbTx-3 receptor-binding assay (RBA) revealed excellent sensitivity, congener selectivity, and minimal interference from blood matrix. We first analyzed blood samples from an acute time course exposure, using a maximal nonlethal dose [180 microg/kg body weight (bw)] for 0.5, 1, 2, 4, and 24 hr. Mean blood brevetoxin levels were 36 nM at 30 min and stayed above 20 nM during the 1-4 hr time points. We next analyzed blood brevetoxin levels after longer exposure (0.5, 1, 2, 3, 4, or 7 days). Mean blood brevetoxin levels were 26.0 nM at 0.5 days, decreased to 8.2 nM at 1.0 day, and maintained a significant level (p < 0.05) of 1.3 nM at day 2. We next determined the lowest measurable dose using increasing concentrations of PbTx-3 (10-300 micro g/kg bw). Analysis of the blood samples at 60 min revealed a linear relationship between administered and internal doses (r(2) = 0.993). All doses of brevetoxin administered were detectable at 1 hr, with significant levels found for the lowest administered dose of 10 micro g/kg bw--a dose that was 10-fold lower than the lowest observable effect level. This RIA provides an optimal first-tier detection of brevetoxin from blood collection cards and, used in combination with the RBA and liquid chromatography-mass spectrometry, should provide a complete panel of methods to biomonitor brevetoxin exposure.

Full Text

The Full Text of this article is available as a PDF (156.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adam B. W., Alexander J. R., Smith S. J., Chace D. H., Loeber J. G., Elvers L. H., Hannon W. H. Recoveries of phenylalanine from two sets of dried-blood-spot reference materials: prediction from hematocrit, spot volume, and paper matrix. Clin Chem. 2000 Jan;46(1):126–128. [PubMed] [Google Scholar]
  2. Baden D. G., Mende T. J., Szmant A. M., Trainer V. L., Edwards R. A., Roszell L. E. Brevetoxin binding: molecular pharmacology versus immunoassay. Toxicon. 1988;26(1):97–103. doi: 10.1016/0041-0101(88)90141-9. [DOI] [PubMed] [Google Scholar]
  3. Baden D. G., Mende T. J., Walling J., Schultz D. R. Specific antibodies directed against toxins of Ptychodiscus brevis (Florida's red tide dinoflagellate). Toxicon. 1984;22(5):783–789. doi: 10.1016/0041-0101(84)90161-2. [DOI] [PubMed] [Google Scholar]
  4. Benson J. M., Tischler D. L., Baden D. G. Uptake, tissue distribution, and excretion of brevetoxin 3 administered to rats by intratracheal instillation. J Toxicol Environ Health A. 1999 Jul 9;57(5):345–355. doi: 10.1080/009841099157656. [DOI] [PubMed] [Google Scholar]
  5. Bourdelais Andrea J., Tomas Carmelo R., Naar Jerome, Kubanek Julia, Baden Daniel G. New fish-killing alga in coastal Delaware produces neurotoxins. Environ Health Perspect. 2002 May;110(5):465–470. doi: 10.1289/ehp.02110465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cattet M., Geraci J. R. Distribution and elimination of ingested brevetoxin (PbTx-3) in rats. Toxicon. 1993 Nov;31(11):1483–1486. doi: 10.1016/0041-0101(93)90214-4. [DOI] [PubMed] [Google Scholar]
  7. Fairey E. R., Shuart N. G., Busman M., Moeller P. D., Ramsdell J. S. Biomonitoring brevetoxin exposure in mammals using blood collection cards. Environ Health Perspect. 2001 Jul;109(7):717–720. doi: 10.1289/ehp.01109717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Garthwaite I., Ross K. M., Miles C. O., Briggs L. R., Towers N. R., Borrell T., Busby P. Integrated enzyme-linked immunosorbent assay screening system for amnesic, neurotoxic, diarrhetic, and paralytic shellfish poisoning toxins found in New Zealand. J AOAC Int. 2001 Sep-Oct;84(5):1643–1648. [PubMed] [Google Scholar]
  9. Gordon C. J., Kimm-Brinson K. L., Padnos B., Ramsdell J. S. Acute and delayed thermoregulatory response of mice exposed to brevetoxin. Toxicon. 2001 Sep;39(9):1367–1374. doi: 10.1016/s0041-0101(01)00092-7. [DOI] [PubMed] [Google Scholar]
  10. Haque Shahroz Mahean, Onoue Yoshio. Variation in toxin compositions of two harmful raphidophytes, Chattonella antiqua and Chattonella marina, at different salinities. Environ Toxicol. 2002;17(2):113–118. doi: 10.1002/tox.10039. [DOI] [PubMed] [Google Scholar]
  11. Ishida H., Muramatsu N., Nukaya H., Kosuge T., Tsuji K. Study on neurotoxic shellfish poisoning involving the oyster, Crassostrea gigas, in New Zealand. Toxicon. 1996 Sep;34(9):1050–1053. doi: 10.1016/0041-0101(96)00076-1. [DOI] [PubMed] [Google Scholar]
  12. Levine L., Shimizu Y. Antibodies to brevetoxin B: serologic differentiation of brevetoxin B and brevetoxin A. Toxicon. 1992 Apr;30(4):411–418. doi: 10.1016/0041-0101(92)90537-f. [DOI] [PubMed] [Google Scholar]
  13. Martin D. F., Chatterjee A. B. Isolation and characterization of a toxin from the Florida red tide organism. Nature. 1969 Jan 4;221(5175):59–59. doi: 10.1038/221059a0. [DOI] [PubMed] [Google Scholar]
  14. McFarren E. F., Silva F. J., Tanabe H., Wilson W. B., Campbell J. E., Lewis K. H. The occurrence of a ciguatera-like poison in oysters, clams, and Gymnodinium breve cultures. Toxicon. 1965 Nov;3(2):111–123. doi: 10.1016/0041-0101(65)90005-x. [DOI] [PubMed] [Google Scholar]
  15. Morohashi A., Satake M., Naoki H., Kaspar H. F., Oshima Y., Yasumoto T. Brevetoxin B4 isolated from greenshell mussels Perna canaliculus, the major toxin involved in neurotoxic shellfish poisoning in New Zealand. Nat Toxins. 1999;7(2):45–48. doi: 10.1002/(sici)1522-7189(199903/04)7:2<45::aid-nt34>3.0.co;2-h. [DOI] [PubMed] [Google Scholar]
  16. Plakas Steven M., el-Said Kathleen R., Jester Edward L. E., Granade H. Ray, Musser Steven M., Dickey Robert W. Confirmation of brevetoxin metabolism in the Eastern oyster (Crassostrea virginica) by controlled exposures to pure toxins and to Karenia brevis cultures. Toxicon. 2002 Jun;40(6):721–729. doi: 10.1016/s0041-0101(01)00267-7. [DOI] [PubMed] [Google Scholar]
  17. Poli M. A., Musser S. M., Dickey R. W., Eilers P. P., Hall S. Neurotoxic shellfish poisoning and brevetoxin metabolites: a case study from Florida. Toxicon. 2000 Jul;38(7):981–993. doi: 10.1016/s0041-0101(99)00191-9. [DOI] [PubMed] [Google Scholar]
  18. Poli M. A., Rein K. S., Baden D. G. Radioimmunoassay for PbTx-2-type brevetoxins: epitope specificity of two anti-PbTx sera. J AOAC Int. 1995 Mar-Apr;78(2):538–542. [PubMed] [Google Scholar]
  19. Poli M. A., Templeton C. B., Thompson W. L., Hewetson J. F. Distribution and elimination of brevetoxin PbTx-3 in rats. Toxicon. 1990;28(8):903–910. doi: 10.1016/0041-0101(90)90020-8. [DOI] [PubMed] [Google Scholar]
  20. Van Dolah F. M., Ramsdell J. S. Review and assessment of in vitro detection methods for algal toxins. J AOAC Int. 2001 Sep-Oct;84(5):1617–1625. [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES