Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2003 Oct;111(13):1630–1639. doi: 10.1289/ehp.6205

Comparable measures of cognitive function in human infants and laboratory animals to identify environmental health risks to children.

Carolyn Sharbaugh 1, Susan Marie Viet 1, Alexa Fraser 1, Suzanne B McMaster 1
PMCID: PMC1241686  PMID: 14527843

Abstract

The importance of including neurodevelopmental end points in environmental studies is clear. A validated measure of cognitive function in human infants that also has a homologous or parallel test in laboratory animal studies will provide a valuable approach for large-scale studies. Such a comparable test will allow researchers to observe the effect of environmental neurotoxicants in animals and relate those findings to humans. In this article, we present the results of a review of post-1990, peer-reviewed literature and current research examining measures of cognitive function that can be applied to both human infants (0-12 months old) and laboratory animals. We begin with a discussion of the definition of cognitive function and important considerations in cross-species research. We then describe identified comparable measures, providing a description of the test in human infants and animal subjects. Available information on test reliability, validity, and population norms, as well as test limitations and constraints, is also presented.

Full Text

The Full Text of this article is available as a PDF (164.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams J., Barone S., Jr, LaMantia A., Philen R., Rice D. C., Spear L., Susser E. Workshop to identify critical windows of exposure for children's health: neurobehavioral work group summary. Environ Health Perspect. 2000 Jun;108 (Suppl 3):535–544. doi: 10.1289/ehp.00108s3535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ahmed A., Ruffman T. Why do infants make A not B errors in a search task, yet show memory for the location of hidden objects in a nonsearch task? Dev Psychol. 1998 May;34(3):441–453. doi: 10.1037//0012-1649.34.3.441. [DOI] [PubMed] [Google Scholar]
  3. Anderson B. The g factor in non-human animals. Novartis Found Symp. 2000;233:79–95. [PubMed] [Google Scholar]
  4. Andersson H. W. The Fagan Test of Infant Intelligence: predictive validity in a random sample. Psychol Rep. 1996 Jun;78(3 Pt 1):1015–1026. doi: 10.2466/pr0.1996.78.3.1015. [DOI] [PubMed] [Google Scholar]
  5. Bell M. A., Fox N. A. The relations between frontal brain electrical activity and cognitive development during infancy. Child Dev. 1992 Oct;63(5):1142–1163. [PubMed] [Google Scholar]
  6. Bellinger David C. Perspectives on incorporating human neurobehavioral end points in risk assessments. Risk Anal. 2002 Jun;22(3):487–498. [PubMed] [Google Scholar]
  7. Burbacher T. M., Grant K. S. Methods for studying nonhuman primates in neurobehavioral toxicology and teratology. Neurotoxicol Teratol. 2000 Jul-Aug;22(4):475–486. doi: 10.1016/s0892-0362(00)00073-8. [DOI] [PubMed] [Google Scholar]
  8. Bushnell P. J. Behavioral approaches to the assessment of attention in animals. Psychopharmacology (Berl) 1998 Aug;138(3-4):231–259. doi: 10.1007/s002130050668. [DOI] [PubMed] [Google Scholar]
  9. Bushnell P. J., Rice D. C. Behavioral assessments of learning and attention in rats exposed perinatally to 3,3',4,4',5-pentachlorobiphenyl (PCB 126) Neurotoxicol Teratol. 1999 Jul-Aug;21(4):381–392. doi: 10.1016/s0892-0362(99)00006-9. [DOI] [PubMed] [Google Scholar]
  10. CAMPBELL B. A., CAMPBELL E. H. Retention and extinction of learned fear in infant and adult rats. J Comp Physiol Psychol. 1962 Feb;55:1–8. doi: 10.1037/h0049182. [DOI] [PubMed] [Google Scholar]
  11. Carey S., Xu F. Infants' knowledge of objects: beyond object files and object tracking. Cognition. 2001 Jun;80(1-2):179–213. doi: 10.1016/s0010-0277(00)00154-2. [DOI] [PubMed] [Google Scholar]
  12. Chelonis J. J., Daniels-Shaw J. L., Blake D. J., Paule M. G. Developmental aspects of delayed matching-to-sample task performance in children. Neurotoxicol Teratol. 2000 Sep-Oct;22(5):683–694. doi: 10.1016/s0892-0362(00)00090-8. [DOI] [PubMed] [Google Scholar]
  13. Claflin Dragana I., Stanton Mark E., Herbert Jane, Greer Jennifer, Eckerman Carol O., Klaflin Dragana I. Effect of delay interval on classical eyeblink conditioning in 5-month-old human infants. Dev Psychobiol. 2002 Dec;41(4):329–340. doi: 10.1002/dev.10050. [DOI] [PubMed] [Google Scholar]
  14. Cory-Slechta D. A., Crofton K. M., Foran J. A., Ross J. F., Sheets L. P., Weiss B., Mileson B. Methods to identify and characterize developmental neurotoxicity for human health risk assessment. I: behavioral effects. Environ Health Perspect. 2001 Mar;109 (Suppl 1):79–91. doi: 10.1289/ehp.01109s179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Darvill T., Lonky E., Reihman J., Stewart P., Pagano J. Prenatal exposure to PCBs and infant performance on the fagan test of infant intelligence. Neurotoxicology. 2000 Dec;21(6):1029–1038. [PubMed] [Google Scholar]
  16. Diamond A., Churchland A., Cruess L., Kirkham N. Z. Early developments in the ability to understand the relation between stimulus and reward. Dev Psychol. 1999 Nov;35(6):1507–1517. doi: 10.1037//0012-1649.35.6.1507. [DOI] [PubMed] [Google Scholar]
  17. Diamond A. Rate of maturation of the hippocampus and the developmental progression of children's performance on the delayed non-matching to sample and visual paired comparison tasks. Ann N Y Acad Sci. 1990;608:394–433. doi: 10.1111/j.1749-6632.1990.tb48904.x. [DOI] [PubMed] [Google Scholar]
  18. Diedrich F. J., Highlands T. M., Spahr K. A., Thelen E., Smith L. B. The role of target distinctiveness in infant perseverative reaching. J Exp Child Psychol. 2001 Mar;78(3):263–290. doi: 10.1006/jecp.2000.2569. [DOI] [PubMed] [Google Scholar]
  19. Dougherty T. M., Haith M. M. Infant expectations and reaction time as predictors of childhood speed of processing and IQ. Dev Psychol. 1997 Jan;33(1):146–155. doi: 10.1037//0012-1649.33.1.146. [DOI] [PubMed] [Google Scholar]
  20. Fagan J. F., 3rd The paired-comparison paradigm and infant intelligence. Ann N Y Acad Sci. 1990;608:337–364. doi: 10.1111/j.1749-6632.1990.tb48902.x. [DOI] [PubMed] [Google Scholar]
  21. Fray P. J., Robbins T. W. CANTAB battery: proposed utility in neurotoxicology. Neurotoxicol Teratol. 1996 Jul-Aug;18(4):499–504. doi: 10.1016/0892-0362(96)00027-x. [DOI] [PubMed] [Google Scholar]
  22. Frick J. E., Colombo J., Saxon T. F. Individual and developmental differences in disengagement of fixation in early infancy. Child Dev. 1999 May-Jun;70(3):537–548. doi: 10.1111/1467-8624.00039. [DOI] [PubMed] [Google Scholar]
  23. Gunderson V. M., Grant K. S., Burbacher T. M., Fagan J. F., 3rd, Mottet N. K. The effect of low-level prenatal methylmercury exposure on visual recognition memory in infant crab-eating macaques. Child Dev. 1986 Aug;57(4):1076–1083. [PubMed] [Google Scholar]
  24. Harman C., Posner M. I., Rothbart M. K., Thomas-Thrapp L. Development of orienting to locations and objects in human infants. Can J Exp Psychol. 1994 Jun;48(2):301–318. doi: 10.1037/1196-1961.48.2.301. [DOI] [PubMed] [Google Scholar]
  25. Hartshorn K., Rovee-Collier C., Gerhardstein P., Bhatt R. S., Klein P. J., Aaron F., Wondoloski T. L., Wurtzel N. Developmental changes in the specificity of memory over the first year of life. Dev Psychobiol. 1998 Jul;33(1):61–78. doi: 10.1002/(sici)1098-2302(199807)33:1<61::aid-dev6>3.0.co;2-q. [DOI] [PubMed] [Google Scholar]
  26. Hartshorn K., Rovee-Collier C., Gerhardstein P., Bhatt R. S., Wondoloski T. L., Klein P., Gilch J., Wurtzel N., Campos-de-Carvalho M. The ontogeny of long-term memory over the first year-and-a-half of life. Dev Psychobiol. 1998 Mar;32(2):69–89. [PubMed] [Google Scholar]
  27. Ivkovich D., Stanton M. E. Effects of early hippocampal lesions on trace, delay, and long-delay eyeblink conditioning in developing rats. Neurobiol Learn Mem. 2001 Nov;76(3):426–446. doi: 10.1006/nlme.2001.4027. [DOI] [PubMed] [Google Scholar]
  28. Jacobson S. W., Fein G. G., Jacobson J. L., Schwartz P. M., Dowler J. K. The effect of intrauterine PCB exposure on visual recognition memory. Child Dev. 1985 Aug;56(4):853–860. [PubMed] [Google Scholar]
  29. Jacobson S. W., Jacobson J. L., Sokol R. J., Martier S. S., Chiodo L. M. New evidence for neurobehavioral effects of in utero cocaine exposure. J Pediatr. 1996 Oct;129(4):581–590. doi: 10.1016/s0022-3476(96)70124-5. [DOI] [PubMed] [Google Scholar]
  30. Kishimoto Y., Suzuki M., Kawahara S., Kirino Y. Age-dependent impairment of delay and trace eyeblink conditioning in mice. Neuroreport. 2001 Oct 29;12(15):3349–3352. doi: 10.1097/00001756-200110290-00040. [DOI] [PubMed] [Google Scholar]
  31. Lavoie Chantale, Desrochers Stéphan. Visual habituation at five months: short-term reliability of measures obtained with a new polynomial regression criterion. J Genet Psychol. 2002 Sep;163(3):261–271. doi: 10.1080/00221320209598682. [DOI] [PubMed] [Google Scholar]
  32. Lilienthal H., Kohler K., Turfeld M., Winneke G. Persistent increases in scotopic B-wave amplitudes after lead exposure in monkeys. Exp Eye Res. 1994 Aug;59(2):203–209. doi: 10.1006/exer.1994.1098. [DOI] [PubMed] [Google Scholar]
  33. Lilienthal H., Lenaerts C., Winneke G., Hennekes R. Alteration of the visual evoked potential and the electroretinogram in lead-treated monkeys. Neurotoxicol Teratol. 1988 Sep-Oct;10(5):417–422. doi: 10.1016/0892-0362(88)90002-5. [DOI] [PubMed] [Google Scholar]
  34. Lilienthal H., Winneke G. Sensitive periods for behavioral toxicity of polychlorinated biphenyls: determination by cross-fostering in rats. Fundam Appl Toxicol. 1991 Aug;17(2):368–375. doi: 10.1016/0272-0590(91)90226-t. [DOI] [PubMed] [Google Scholar]
  35. Lipsitt L. P. Learning processes in the human newborn. Sensitization, habituation, and classical conditioning. Ann N Y Acad Sci. 1990;608:113–127. doi: 10.1111/j.1749-6632.1990.tb48894.x. [DOI] [PubMed] [Google Scholar]
  36. Manns Joseph R., Clark Robert E., Squire Larry R. Standard delay eyeblink classical conditioning is independent of awareness. J Exp Psychol Anim Behav Process. 2002 Jan;28(1):32–37. [PubMed] [Google Scholar]
  37. Mayorga A. J., Popke E. J., Fogle C. M., Paule M. G. Adaptation of a primate operant test battery to the rat: effects of chlorpromazine. Neurotoxicol Teratol. 2000 Jan-Feb;22(1):31–39. doi: 10.1016/s0892-0362(99)00045-8. [DOI] [PubMed] [Google Scholar]
  38. Nelson C. A., Wewerka S., Thomas K. M., Tribby-Walbridge S., deRegnier R., Georgieff M. Neurocognitive sequelae of infants of diabetic mothers. Behav Neurosci. 2000 Oct;114(5):950–956. [PubMed] [Google Scholar]
  39. Overman W. H., Bachevalier J., Sewell F., Drew J. A comparison of children's performance on two recognition memory tasks: delayed nonmatch-to-sample versus visual paired-comparison. Dev Psychobiol. 1993 Sep;26(6):345–357. doi: 10.1002/dev.420260605. [DOI] [PubMed] [Google Scholar]
  40. Overman W. H. Performance on traditional matching to sample, non-matching to sample, and object discrimination tasks by 12- to 32-month-old children. A developmental progression. Ann N Y Acad Sci. 1990;608:365–393. doi: 10.1111/j.1749-6632.1990.tb48903.x. [DOI] [PubMed] [Google Scholar]
  41. Overman W., Bachevalier J., Miller M., Moore K. Children's performance on "animal tests" of oddity: implications for cognitive processes required for tests of oddity and delayed nonmatch to sample. J Exp Child Psychol. 1996 Jul;62(2):223–242. doi: 10.1006/jecp.1996.0029. [DOI] [PubMed] [Google Scholar]
  42. Overman W., Bachevalier J., Turner M., Peuster A. Object recognition versus object discrimination: comparison between human infants and infant monkeys. Behav Neurosci. 1992 Feb;106(1):15–29. doi: 10.1037//0735-7044.106.1.15. [DOI] [PubMed] [Google Scholar]
  43. Paule M. G., Bushnell P. J., Maurissen J. P., Wenger G. R., Buccafusco J. J., Chelonis J. J., Elliott R. Symposium overview: the use of delayed matching-to-sample procedures in studies of short-term memory in animals and humans. Neurotoxicol Teratol. 1998 Sep-Oct;20(5):493–502. doi: 10.1016/s0892-0362(98)00013-0. [DOI] [PubMed] [Google Scholar]
  44. Paule M. G., Chelonis J. J., Buffalo E. A., Blake D. J., Casey P. H. Operant test battery performance in children: correlation with IQ. Neurotoxicol Teratol. 1999 May-Jun;21(3):223–230. doi: 10.1016/s0892-0362(98)00045-2. [DOI] [PubMed] [Google Scholar]
  45. Paule M. G., Popke E. J., Pearson E., Hammond T. Development of a nonhuman primate model for studying the consequences of long-term neuroprotectant administration on complex brain functions in developing animals. Ann N Y Acad Sci. 1999;890:470–470. doi: 10.1111/j.1749-6632.1999.tb08027.x. [DOI] [PubMed] [Google Scholar]
  46. Rice D., Barone S., Jr Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models. Environ Health Perspect. 2000 Jun;108 (Suppl 3):511–533. doi: 10.1289/ehp.00108s3511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Rose S. A. Differential rates of visual information processing in full-term and preterm infants. Child Dev. 1983 Oct;54(5):1189–1198. [PubMed] [Google Scholar]
  48. Rose S. A., Feldman J. F., Jankowski J. J. Attention and recognition memory in the 1st year of life: a longitudinal study of preterm and full-term infants. Dev Psychol. 2001 Jan;37(1):135–151. [PubMed] [Google Scholar]
  49. Rose S. A., Feldman J. F., Wallace I. F. Infant information processing in relation to six-year cognitive outcomes. Child Dev. 1992 Oct;63(5):1126–1141. [PubMed] [Google Scholar]
  50. Simmer K. Long-chain polyunsaturated fatty acid supplementation in infants born at term. Cochrane Database Syst Rev. 2000;(2):CD000376–CD000376. doi: 10.1002/14651858.CD000376. [DOI] [PubMed] [Google Scholar]
  51. Sirois Sylvain, Mareschal Denis. Models of habituation in infancy. Trends Cogn Sci. 2002 Jul 1;6(7):293–298. doi: 10.1016/s1364-6613(02)01926-5. [DOI] [PubMed] [Google Scholar]
  52. Slater A. Individual differences in infancy and later IQ. J Child Psychol Psychiatry. 1995 Jan;36(1):69–112. doi: 10.1111/j.1469-7610.1995.tb01656.x. [DOI] [PubMed] [Google Scholar]
  53. Slikker W., Jr, Beck B. D., Cory-Slechta D. A., Paule M. G., Anger W. K., Bellinger D. Cognitive tests: interpretation for neurotoxicity? (Workshop summary). Toxicol Sci. 2000 Dec;58(2):222–234. doi: 10.1093/toxsci/58.2.222. [DOI] [PubMed] [Google Scholar]
  54. Stanton M. E., Freeman J. H., Jr Eyeblink conditioning in the infant rat: an animal model of learning in developmental neurotoxicology. Environ Health Perspect. 1994 Jun;102 (Suppl 2):131–139. doi: 10.1289/ehp.94102131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Stanton M. E., Goodlett C. R. Neonatal ethanol exposure impairs eyeblink conditioning in weanling rats. Alcohol Clin Exp Res. 1998 Feb;22(1):270–275. [PubMed] [Google Scholar]
  56. Stanton M. E. Multiple memory systems, development and conditioning. Behav Brain Res. 2000 Jun 1;110(1-2):25–37. doi: 10.1016/s0166-4328(99)00182-5. [DOI] [PubMed] [Google Scholar]
  57. Stanton M. E., Spear L. P. Workshop on the qualitative and quantitative comparability of human and animal developmental neurotoxicity, Work Group I report: comparability of measures of developmental neurotoxicity in humans and laboratory animals. Neurotoxicol Teratol. 1990 May-Jun;12(3):261–267. doi: 10.1016/0892-0362(90)90097-v. [DOI] [PubMed] [Google Scholar]
  58. Willatts P., Forsyth J. S. The role of long-chain polyunsaturated fatty acids in infant cognitive development. Prostaglandins Leukot Essent Fatty Acids. 2000 Jul-Aug;63(1-2):95–100. doi: 10.1054/plef.2000.0198. [DOI] [PubMed] [Google Scholar]
  59. Winneke G., Bucholski A., Heinzow B., Krämer U., Schmidt E., Walkowiak J., Wiener J. A., Steingrüber H. J. Developmental neurotoxicity of polychlorinated biphenyls (PCBS): cognitive and psychomotor functions in 7-month old children. Toxicol Lett. 1998 Dec 28;102-103:423–428. doi: 10.1016/s0378-4274(98)00334-8. [DOI] [PubMed] [Google Scholar]
  60. Winneke G. Cross species extrapolation in neurotoxicology: neurophysiological and neurobehavioral aspects. Neurotoxicology. 1992 Spring;13(1):15–25. [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES