Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2003 Nov;111(14):1699–1703. doi: 10.1289/ehp.6229

Oxidative stress-related mechanisms are associated with xenobiotics exerting excess toxicity to Fanconi anemia cells.

Giovanni Pagano 1, Paola Manini 1, Debasis Bagchi 1
PMCID: PMC1241709  PMID: 14594617

Abstract

An extensive body of evidence has demonstrated the sensitivity of Fanconi anemia (FA) cells to redox-active xenobiotics, such as mitomycin C, diepoxybutane, cisplatin, and 8-methoxypsoralen plus ultraviolet irradiation, with toxicity mechanisms that are consistent with a deficiency of FA cells in coping with oxidative stress. A recent study has reported on excess sensitivity of FA complementation A group cells to chromium VI [Cr(VI)] toxicity, by postulating that a deficiency in Cr-DNA cross-link removal by FA cells and formation of Cr(VI)-associated cross-links may be the mechanism of Cr(VI)-induced cytotoxicity. However, the report failed to demonstrate any enhanced Cr uptake or, especially, any increase in Cr-DNA adducts. Thus, well-established findings on Cr(VI)-induced oxidative stress may explain excess sensitivity of FA cells to Cr(VI) in terms of its inability to cope with the Cr(VI)-induced prooxidant state.

Full Text

The Full Text of this article is available as a PDF (129.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmad Shamim I., Hanaoka Fumio, Kirk Sandra H. Molecular biology of Fanconi anaemia--an old problem, a new insight. Bioessays. 2002 May;24(5):439–448. doi: 10.1002/bies.10082. [DOI] [PubMed] [Google Scholar]
  2. Alter B. P. Fanconi's anemia and malignancies. Am J Hematol. 1996 Oct;53(2):99–110. doi: 10.1002/(SICI)1096-8652(199610)53:2<99::AID-AJH7>3.0.CO;2-Z. [DOI] [PubMed] [Google Scholar]
  3. Auerbach A. D., Wolman S. R. Susceptibility of Fanconi's anaemia fibroblasts to chromosome damage by carcinogens. Nature. 1976 Jun 10;261(5560):494–496. doi: 10.1038/261494a0. [DOI] [PubMed] [Google Scholar]
  4. Bagchi D., Bagchi M., Stohs S. J. Chromium (VI)-induced oxidative stress, apoptotic cell death and modulation of p53 tumor suppressor gene. Mol Cell Biochem. 2001 Jun;222(1-2):149–158. [PubMed] [Google Scholar]
  5. Bagchi D., Hassoun E. A., Bagchi M., Stohs S. J. Chromium-induced excretion of urinary lipid metabolites, DNA damage, nitric oxide production, and generation of reactive oxygen species in Sprague-Dawley rats. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol. 1995 Feb;110(2):177–187. doi: 10.1016/0742-8413(94)00093-p. [DOI] [PubMed] [Google Scholar]
  6. Bagchi D., Vuchetich P. J., Bagchi M., Hassoun E. A., Tran M. X., Tang L., Stohs S. J. Induction of oxidative stress by chronic administration of sodium dichromate [chromium VI] and cadmium chloride [cadmium II] to rats. Free Radic Biol Med. 1997;22(3):471–478. doi: 10.1016/s0891-5849(96)00352-8. [DOI] [PubMed] [Google Scholar]
  7. Bagchi Debasis, Balmoori Jaya, Bagchi Manashi, Ye Xumein, Williams Casey B., Stohs Sidney J. Comparative effects of TCDD, endrin, naphthalene and chromium (VI) on oxidative stress and tissue damage in the liver and brain tissues of mice. Toxicology. 2002 Jun 14;175(1-3):73–82. doi: 10.1016/s0300-483x(02)00062-8. [DOI] [PubMed] [Google Scholar]
  8. Balamurugan Kuppusamy, Rajaram Rama, Ramasami Thirumalachari, Narayanan Sujatha. Chromium(III)-induced apoptosis of lymphocytes: death decision by ROS and Src-family tyrosine kinases. Free Radic Biol Med. 2002 Dec 15;33(12):1622–1640. doi: 10.1016/s0891-5849(02)01115-2. [DOI] [PubMed] [Google Scholar]
  9. Barnouin Karin, Dubuisson Marlène L., Child Emma S., Fernandez de Mattos Silvia, Glassford Janet, Medema René H., Mann David J., Lam Eric W-F. H2O2 induces a transient multi-phase cell cycle arrest in mouse fibroblasts through modulating cyclin D and p21Cip1 expression. J Biol Chem. 2002 Feb 4;277(16):13761–13770. doi: 10.1074/jbc.M111123200. [DOI] [PubMed] [Google Scholar]
  10. Bauman J. W., Liu J., Liu Y. P., Klaassen C. D. Increase in metallothionein produced by chemicals that induce oxidative stress. Toxicol Appl Pharmacol. 1991 Sep 1;110(2):347–354. doi: 10.1016/s0041-008x(05)80017-1. [DOI] [PubMed] [Google Scholar]
  11. Blasiak J., Kowalik J. A comparison of the in vitro genotoxicity of tri- and hexavalent chromium. Mutat Res. 2000 Aug 21;469(1):135–145. doi: 10.1016/s1383-5718(00)00065-6. [DOI] [PubMed] [Google Scholar]
  12. Bogliolo M., Cabré O., Callén E., Castillo V., Creus A., Marcos R., Surrallés J. The Fanconi anaemia genome stability and tumour suppressor network. Mutagenesis. 2002 Nov;17(6):529–538. doi: 10.1093/mutage/17.6.529. [DOI] [PubMed] [Google Scholar]
  13. Bridgewater L. C., Manning F. C., Patierno S. R. Arrest of replication by mammalian DNA polymerases alpha and beta caused by chromium-DNA lesions. Mol Carcinog. 1998 Dec;23(4):201–206. [PubMed] [Google Scholar]
  14. Cabrer J., Burkhardt S., Tan D. X., Manchester L. C., Karbownik M., Reiter R. J. Autoxidation and toxicant-induced oxidation of lipid and DNA in monkey liver: reduction of molecular damage by melatonin. Pharmacol Toxicol. 2001 Nov;89(5):225–230. doi: 10.1034/j.1600-0773.2001.d01-152.x. [DOI] [PubMed] [Google Scholar]
  15. Chen Qin M., Merrett Jessica B., Dilley Tarrah, Purdom Sally. Down regulation of p53 with HPV E6 delays and modifies cell death in oxidant response of human diploid fibroblasts: an apoptosis-like cell death associated with mitosis. Oncogene. 2002 Aug 8;21(34):5313–5324. doi: 10.1038/sj.onc.1205644. [DOI] [PubMed] [Google Scholar]
  16. Chuang Yao-Yu Eric, Chen Yidong, Gadisetti, Chandramouli V. R., Cook John A., Coffin Deborah, Tsai Mong-Hsun, DeGraff William, Yan Hailing, Zhao Shuping. Gene expression after treatment with hydrogen peroxide, menadione, or t-butyl hydroperoxide in breast cancer cells. Cancer Res. 2002 Nov 1;62(21):6246–6254. [PubMed] [Google Scholar]
  17. Clarke A. A., Philpott N. J., Gordon-Smith E. C., Rutherford T. R. The sensitivity of Fanconi anaemia group C cells to apoptosis induced by mitomycin C is due to oxygen radical generation, not DNA crosslinking. Br J Haematol. 1997 Feb;96(2):240–247. doi: 10.1046/j.1365-2141.1997.d01-2023.x. [DOI] [PubMed] [Google Scholar]
  18. Cumming R. C., Lightfoot J., Beard K., Youssoufian H., O'Brien P. J., Buchwald M. Fanconi anemia group C protein prevents apoptosis in hematopoietic cells through redox regulation of GSTP1. Nat Med. 2001 Jul;7(7):814–820. doi: 10.1038/89937. [DOI] [PubMed] [Google Scholar]
  19. Dallapiccola B., Porfirio B., Mokini V., Alimena G., Isacchi G., Gandini E. Effect of oxidants and antioxidants on chromosomal breakage in Fanconi anemia lymphocytes. Hum Genet. 1985;69(1):62–65. doi: 10.1007/BF00295530. [DOI] [PubMed] [Google Scholar]
  20. De Martinis B. S., Bianchi M. D. Effect of vitamin C supplementation against cisplatin-induced toxicity and oxidative DNA damage in rats. Pharmacol Res. 2001 Oct;44(4):317–320. doi: 10.1006/phrs.2001.0860. [DOI] [PubMed] [Google Scholar]
  21. Degan P., Bonassi S., De Caterina M., Korkina L. G., Pinto L., Scopacasa F., Zatterale A., Calzone R., Pagano G. In vivo accumulation of 8-hydroxy-2'-deoxyguanosine in DNA correlates with release of reactive oxygen species in Fanconi's anaemia families. Carcinogenesis. 1995 Apr;16(4):735–741. doi: 10.1093/carcin/16.4.735. [DOI] [PubMed] [Google Scholar]
  22. Dusre L., Rajagopalan S., Eliot H. M., Covey J. M., Sinha B. K. DNA interstrand cross-link and free radical formation in a human multidrug-resistant cell line from mitomycin C and its analogues. Cancer Res. 1990 Feb 1;50(3):648–652. [PubMed] [Google Scholar]
  23. Emerit I., Levy A., Pagano G., Pinto L., Calzone R., Zatterale A. Transferable clastogenic activity in plasma from patients with Fanconi anemia. Hum Genet. 1995 Jul;96(1):14–20. doi: 10.1007/BF00214180. [DOI] [PubMed] [Google Scholar]
  24. Ercal N., Gurer-Orhan H., Aykin-Burns N. Toxic metals and oxidative stress part I: mechanisms involved in metal-induced oxidative damage. Curr Top Med Chem. 2001 Dec;1(6):529–539. doi: 10.2174/1568026013394831. [DOI] [PubMed] [Google Scholar]
  25. Esposito F., Cuccovillo F., Russo L., Casella F., Russo T., Cimino F. A new p21waf1/cip1 isoform is an early event of cell response to oxidative stress. Cell Death Differ. 1998 Nov;5(11):940–945. doi: 10.1038/sj.cdd.4400427. [DOI] [PubMed] [Google Scholar]
  26. Futaki Makoto, Igarashi Takehito, Watanabe Shinji, Kajigaya Sachiko, Tatsuguchi Atsushi, Wang Jianxiang, Liu Johnson M. The FANCG Fanconi anemia protein interacts with CYP2E1: possible role in protection against oxidative DNA damage. Carcinogenesis. 2002 Jan;23(1):67–72. doi: 10.1093/carcin/23.1.67. [DOI] [PubMed] [Google Scholar]
  27. Godbout Jonathan P., Pesavento James, Hartman Matthew E., Manson Scott R., Freund Gregory G. Methylglyoxal enhances cisplatin-induced cytotoxicity by activating protein kinase Cdelta. J Biol Chem. 2001 Nov 13;277(4):2554–2561. doi: 10.1074/jbc.M100385200. [DOI] [PubMed] [Google Scholar]
  28. Gutteridge J. M., Quinlan G. J., Wilkins S. Mitomycin C-induced deoxyribose degradation inhibited by superoxide dismutase. A reaction involving iron, hydroxyl and semiquinone radicals. FEBS Lett. 1984 Feb 13;167(1):37–41. doi: 10.1016/0014-5793(84)80828-5. [DOI] [PubMed] [Google Scholar]
  29. Hadjur Suzana, Jirik Frank R. Increased sensitivity of Fancc-deficient hematopoietic cells to nitric oxide and evidence that this species mediates growth inhibition by cytokines. Blood. 2003 Jan 9;101(10):3877–3884. doi: 10.1182/blood-2002-10-3147. [DOI] [PubMed] [Google Scholar]
  30. Hassoun E. A., Stohs S. J. Chromium-induced production of reactive oxygen species, DNA single-strand breaks, nitric oxide production, and lactate dehydrogenase leakage in J774A.1 cell cultures. J Biochem Toxicol. 1995 Dec;10(6):315–321. doi: 10.1002/jbt.2570100606. [DOI] [PubMed] [Google Scholar]
  31. Hodges N. J., Adám B., Lee A. J., Cross H. J., Chipman J. K. Induction of DNA-strand breaks in human peripheral blood lymphocytes and A549 lung cells by sodium dichromate: association with 8-oxo-2-deoxyguanosine formation and inter-individual variability. Mutagenesis. 2001 Nov;16(6):467–474. doi: 10.1093/mutage/16.6.467. [DOI] [PubMed] [Google Scholar]
  32. IYER V. N., SZYBALSKI W. MITOMYCINS AND PORFIROMYCIN: CHEMICAL MECHANISM OF ACTIVATION AND CROSS-LINKING OF DNA. Science. 1964 Jul 3;145(3627):55–58. doi: 10.1126/science.145.3627.55. [DOI] [PubMed] [Google Scholar]
  33. Izzotti A., Bagnasco M., Camoirano A., Orlando M., De Flora S. DNA fragmentation, DNA-protein crosslinks, postlabeled nucleotidic modifications, and 8-hydroxy-2'-deoxyguanosine in the lung but not in the liver of rats receiving intratracheal instillations of chromium(VI). Chemoprevention by oral N-acetylcysteine. Mutat Res. 1998 May 25;400(1-2):233–244. doi: 10.1016/s0027-5107(98)00028-1. [DOI] [PubMed] [Google Scholar]
  34. Joenje H., Arwert F., Eriksson A. W., de Koning H., Oostra A. B. Oxygen-dependence of chromosomal aberrations in Fanconi's anaemia. Nature. 1981 Mar 12;290(5802):142–143. doi: 10.1038/290142a0. [DOI] [PubMed] [Google Scholar]
  35. Joenje H., Oostra A. B. Clastogenicity of cyclophosphamide in Fanconi's anemia lymphocytes without exogenous metabolic activation. Cancer Genet Cytogenet. 1986 Aug;22(4):339–345. doi: 10.1016/0165-4608(86)90026-9. [DOI] [PubMed] [Google Scholar]
  36. Kontou Maria, Adelfalk Caroline, Ramirez Maria Helena, Ruppitsch Werner, Hirsch-Kauffmann Monica, Schweiger Manfred. Overexpressed thioredoxin compensates Fanconi anemia related chromosomal instability. Oncogene. 2002 Apr 4;21(15):2406–2412. doi: 10.1038/sj.onc.1205299. [DOI] [PubMed] [Google Scholar]
  37. Korkina L. G., Deeva I. B., De Biase A., Iaccarino M., Oral R., Warnau M., Pagano G. Redox-dependent toxicity of diepoxybutane and mitomycin C in sea urchin embryogenesis. Carcinogenesis. 2000 Feb;21(2):213–220. doi: 10.1093/carcin/21.2.213. [DOI] [PubMed] [Google Scholar]
  38. Kruyt F. A., Dijkmans L. M., Arwert F., Joenje H. Involvement of the Fanconi's anemia protein FAC in a pathway that signals to the cyclin B/cdc2 kinase. Cancer Res. 1997 Jun 1;57(11):2244–2251. [PubMed] [Google Scholar]
  39. Kruyt F. A., Dijkmans L. M., van den Berg T. K., Joenje H. Fanconi anemia genes act to suppress a cross-linker-inducible p53-independent apoptosis pathway in lymphoblastoid cell lines. Blood. 1996 Feb 1;87(3):938–948. [PubMed] [Google Scholar]
  40. Kruyt F. A., Hoshino T., Liu J. M., Joseph P., Jaiswal A. K., Youssoufian H. Abnormal microsomal detoxification implicated in Fanconi anemia group C by interaction of the FAC protein with NADPH cytochrome P450 reductase. Blood. 1998 Nov 1;92(9):3050–3056. [PubMed] [Google Scholar]
  41. Kupfer G. M., D'Andrea A. D. The effect of the Fanconi anemia polypeptide, FAC, upon p53 induction and G2 checkpoint regulation. Blood. 1996 Aug 1;88(3):1019–1025. [PubMed] [Google Scholar]
  42. Madle S. Evaluation of experimental parameters in an S9 /human leukocyte SCE test with cyclophosphamide. Mutat Res. 1981 Oct;85(5):347–356. doi: 10.1016/0165-1161(81)90225-9. [DOI] [PubMed] [Google Scholar]
  43. Mattagajasingh S. N., Misra H. P. Analysis of EDTA-chelatable proteins from DNA-protein crosslinks induced by a carcinogenic chromium(VI) in cultured intact human cells. Mol Cell Biochem. 1999 Sep;199(1-2):149–162. doi: 10.1023/a:1006910732307. [DOI] [PubMed] [Google Scholar]
  44. Moustacchi E., Diatloff-Zito C. DNA semi-conservative synthesis in normal and Fanconi anemia fibroblasts following treatment with 8-methoxypsoralen and near ultraviolet light or with X-rays. Hum Genet. 1985;70(3):236–242. doi: 10.1007/BF00273448. [DOI] [PubMed] [Google Scholar]
  45. Nguyên-nhu Nhu Tiên, Knoops Bernard. Alkyl hydroperoxide reductase 1 protects Saccharomyces cerevisiae against metal ion toxicity and glutathione depletion. Toxicol Lett. 2002 Oct 5;135(3):219–228. doi: 10.1016/s0378-4274(02)00280-1. [DOI] [PubMed] [Google Scholar]
  46. Nordenson I. Effect of superoxide dismutase and catalase on spontaneously occurring chromosome breaks in patients with Fanconi's anemia. Hereditas. 1977;86(2):147–150. doi: 10.1111/j.1601-5223.1977.tb01223.x. [DOI] [PubMed] [Google Scholar]
  47. O'Brien T., Xu J., Patierno S. R. Effects of glutathione on chromium-induced DNA crosslinking and DNA polymerase arrest. Mol Cell Biochem. 2001 Jun;222(1-2):173–182. [PubMed] [Google Scholar]
  48. Pagano G., Degan P., De Biase A., Iaccarino M., Warnau M. Diepoxybutane and mitomycin C toxicity is associated with the induction of oxidative DNA damage in sea urchin embryos. Hum Exp Toxicol. 2001 Dec;20(12):651–655. doi: 10.1191/096032701718890577. [DOI] [PubMed] [Google Scholar]
  49. Pagano G., Korkina L. G., Brunk U. T., Chessa L., Degan P., del Principe D., Kelly F. J., Malorni W., Pallardó F., Pasquier C. Congenital disorders sharing oxidative stress and cancer proneness as phenotypic hallmarks: prospects for joint research in pharmacology. Med Hypotheses. 1998 Sep;51(3):253–266. doi: 10.1016/s0306-9877(98)90084-6. [DOI] [PubMed] [Google Scholar]
  50. Pagano G., Korkina L. G. Prospects for nutritional interventions in the clinical management of Fanconi anemia. Cancer Causes Control. 2000 Dec;11(10):881–889. doi: 10.1023/a:1026503020755. [DOI] [PubMed] [Google Scholar]
  51. Pagano G. Redox-modulated xenobiotic action and ROS formation: a mirror or a window? Hum Exp Toxicol. 2002 Feb;21(2):77–81. doi: 10.1191/0960327102ht214oa. [DOI] [PubMed] [Google Scholar]
  52. Pagano Giovanni, Youssoufian Hagop. Fanconi anaemia proteins: major roles in cell protection against oxidative damage. Bioessays. 2003 Jun;25(6):589–595. doi: 10.1002/bies.10283. [DOI] [PubMed] [Google Scholar]
  53. Pearl-Yafe Michal, Halperin Drora, Halevy Ayelet, Kalir Henry, Bielorai Bella, Fabian Ina. An oxidative mechanism of interferon induced priming of the Fas pathway in Fanconi anemia cells. Biochem Pharmacol. 2003 Mar 1;65(5):833–842. doi: 10.1016/s0006-2952(02)01620-9. [DOI] [PubMed] [Google Scholar]
  54. Penketh P. G., Hodnick W. F., Belcourt M. F., Shyam K., Sherman D. H., Sartorelli A. C. Inhibition of DNA cross-linking by mitomycin C by peroxidase-mediated oxidation of mitomycin C hydroquinone. J Biol Chem. 2001 Jul 16;276(37):34445–34452. doi: 10.1074/jbc.M104263200. [DOI] [PubMed] [Google Scholar]
  55. Poll E. H., Arwert F., Joenje H., Eriksson A. W. Cytogenetic toxicity of antitumor platinum compounds in Fanconi's anemia. Hum Genet. 1982;61(3):228–230. doi: 10.1007/BF00296447. [DOI] [PubMed] [Google Scholar]
  56. Poot M., Gross O., Epe B., Pflaum M., Hoehn H. Cell cycle defect in connection with oxygen and iron sensitivity in Fanconi anemia lymphoblastoid cells. Exp Cell Res. 1996 Feb 1;222(2):262–268. doi: 10.1006/excr.1996.0033. [DOI] [PubMed] [Google Scholar]
  57. Pritsos C. A., Sartorelli A. C. Generation of reactive oxygen radicals through bioactivation of mitomycin antibiotics. Cancer Res. 1986 Jul;46(7):3528–3532. [PubMed] [Google Scholar]
  58. Punnonen K., Jansén C. T., Puntala A., Ahotupa M. Effects of in vitro UVA irradiation and PUVA treatment on membrane fatty acids and activities of antioxidant enzymes in human keratinocytes. J Invest Dermatol. 1991 Feb;96(2):255–259. doi: 10.1111/1523-1747.ep12462271. [DOI] [PubMed] [Google Scholar]
  59. Quievryn G., Goulart M., Messer J., Zhitkovich A. Reduction of Cr (VI) by cysteine: significance in human lymphocytes and formation of DNA damage in reactions with variable reduction rates. Mol Cell Biochem. 2001 Jun;222(1-2):107–118. [PubMed] [Google Scholar]
  60. Raj A. S., Heddle J. A. The effect of superoxide dismutase, catalase and L-cysteine on spontaneous and on mitomycin C induced chromosomal breakage in Fanconi's anemia and normal fibroblasts as measured by the micronucleus method. Mutat Res. 1980 May;78(1):59–66. doi: 10.1016/0165-1218(80)90026-9. [DOI] [PubMed] [Google Scholar]
  61. Reinheckel T., Bohne M., Halangk W., Augustin W., Gollnick H. Evaluation of UVA-mediated oxidative damage to proteins and lipids in extracorporeal photoimmunotherapy. Photochem Photobiol. 1999 May;69(5):566–570. [PubMed] [Google Scholar]
  62. Ruppitsch W., Meisslitzer C., Hirsch-Kauffmann M., Schweiger M. Overexpression of thioredoxin in Fanconi anemia fibroblasts prevents the cytotoxic and DNA damaging effect of mitomycin C and diepoxybutane. FEBS Lett. 1998 Jan 23;422(1):99–102. doi: 10.1016/s0014-5793(97)01608-6. [DOI] [PubMed] [Google Scholar]
  63. Sawamura A. O., Aoyama T., Tamakoshi K., Mizuno K., Suganuma N., Kikkawa F., Tomoda Y. Transfection of human cytochrome P-450 reductase cDNA and its effect on the sensitivity to toxins. Oncology. 1996 Sep-Oct;53(5):406–411. doi: 10.1159/000227596. [DOI] [PubMed] [Google Scholar]
  64. Schaaf G. J., Maas R. F. M., de Groene E. M., Fink-Gremmels J. Management of oxidative stress by heme oxygenase-1 in cisplatin-induced toxicity in renal tubular cells. Free Radic Res. 2002 Aug;36(8):835–843. doi: 10.1080/1071576021000005267. [DOI] [PubMed] [Google Scholar]
  65. Schultz J. C., Shahidi N. T. Tumor necrosis factor-alpha overproduction in Fanconi's anemia. Am J Hematol. 1993 Feb;42(2):196–201. doi: 10.1002/ajh.2830420211. [DOI] [PubMed] [Google Scholar]
  66. Seaton M. J., Follansbee M. H., Bond J. A. Oxidation of 1,2-epoxy-3-butene to 1,2:3,4-diepoxybutane by cDNA-expressed human cytochromes P450 2E1 and 3A4 and human, mouse and rat liver microsomes. Carcinogenesis. 1995 Oct;16(10):2287–2293. doi: 10.1093/carcin/16.10.2287. [DOI] [PubMed] [Google Scholar]
  67. Shi X., Dong Z., Huang C., Ma W., Liu K., Ye J., Chen F., Leonard S. S., Ding M., Castranova V. The role of hydroxyl radical as a messenger in the activation of nuclear transcription factor NF-kappaB. Mol Cell Biochem. 1999 Apr;194(1-2):63–70. doi: 10.1023/a:1006904904514. [DOI] [PubMed] [Google Scholar]
  68. Singh J., Bridgewater L. C., Patierno S. R. Differential sensitivity of chromium-mediated DNA interstrand crosslinks and DNA-protein crosslinks to disruption by alkali and EDTA. Toxicol Sci. 1998 Sep;45(1):72–76. doi: 10.1006/toxs.1998.2489. [DOI] [PubMed] [Google Scholar]
  69. Spanò M., Cordelli E., Leter G., Pacchierotti F. Diepoxybutane cytotoxicity on mouse germ cells is enhanced by in vivo glutathione depletion: a flow cytometric approach. Mutat Res. 1998 Jan 16;397(1):37–43. doi: 10.1016/s0027-5107(97)00193-0. [DOI] [PubMed] [Google Scholar]
  70. Stohs S. J., Bagchi D. Oxidative mechanisms in the toxicity of metal ions. Free Radic Biol Med. 1995 Feb;18(2):321–336. doi: 10.1016/0891-5849(94)00159-h. [DOI] [PubMed] [Google Scholar]
  71. Takeuchi T., Morimoto K. Increased formation of 8-hydroxydeoxyguanosine, an oxidative DNA damage, in lymphoblasts from Fanconi's anemia patients due to possible catalase deficiency. Carcinogenesis. 1993 Jun;14(6):1115–1120. doi: 10.1093/carcin/14.6.1115. [DOI] [PubMed] [Google Scholar]
  72. Tamary Hannah, Bar-Yam Raanan, Zemach Michal, Dgany Orly, Shalmon Lea, Yaniv Isaac. The molecular biology of Fanconi anemia. Isr Med Assoc J. 2002 Oct;4(10):819–823. [PubMed] [Google Scholar]
  73. Taylor W. R., Stark G. R. Regulation of the G2/M transition by p53. Oncogene. 2001 Apr 5;20(15):1803–1815. doi: 10.1038/sj.onc.1204252. [DOI] [PubMed] [Google Scholar]
  74. Travacio M., María Polo J., Llesuy S. Chromium(VI) induces oxidative stress in the mouse brain. Toxicology. 2000 Sep 7;150(1-3):137–146. doi: 10.1016/s0300-483x(00)00254-7. [DOI] [PubMed] [Google Scholar]
  75. Tsou T. C., Chen C. L., Liu T. Y., Yang J. L. Induction of 8-hydroxydeoxyguanosine in DNA by chromium(III) plus hydrogen peroxide and its prevention by scavengers. Carcinogenesis. 1996 Jan;17(1):103–108. doi: 10.1093/carcin/17.1.103. [DOI] [PubMed] [Google Scholar]
  76. Vilcheck Susan K., O'Brien Travis J., Pritchard Daryl E., Ha Linan, Ceryak Susan, Fornsaglio Jamie L., Patierno Steven R. Fanconi anemia complementation group A cells are hypersensitive to chromium(VI)-induced toxicity. Environ Health Perspect. 2002 Oct;110 (Suppl 5):773–777. doi: 10.1289/ehp.02110s5773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Vlachodimitropoulos D., Norppa H., Autio K., Catalán J., Hirvonen A., Tasa G., Uusküla M., Demopoulos N. A., Sorsa M. GSTT1-dependent induction of centromere-negative and -positive micronuclei by 1,2:3,4-diepoxybutane in cultured human lymphocytes. Mutagenesis. 1997 Sep;12(5):397–403. doi: 10.1093/mutage/12.5.397. [DOI] [PubMed] [Google Scholar]
  78. Waisfisz Quinten, Miyazato Akira, De Winter Johan P., Liu Johnson M., Joenje Hans. Analysis of baseline and cisplatin-inducible gene expression in Fanconi anemia cells using oligonucleotide-based microarrays. BMC Blood Disord. 2002 Nov 26;2(1):5–5. doi: 10.1186/1471-2326-2-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  79. Will O., Schindler D., Boiteux S., Epe B. Fanconi's anaemia cells have normal steady-state levels and repair of oxidative DNA base modifications sensitive to Fpg protein. Mutat Res. 1998 Nov 12;409(2):65–72. doi: 10.1016/s0921-8777(98)00043-3. [DOI] [PubMed] [Google Scholar]
  80. d'Ischia M., Napolitano A., Prota G. Psoralens sensitize glutathione photooxidation in vitro. Biochim Biophys Acta. 1989 Dec 8;993(2-3):143–147. doi: 10.1016/0304-4165(89)90156-6. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES