Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2003 Nov;111(14):1719–1722. doi: 10.1289/ehp.6235

Prenatal exposures to phthalates among women in New York City and Krakow, Poland.

Jennifer J Adibi 1, Frederica P Perera 1, Wieslaw Jedrychowski 1, David E Camann 1, Dana Barr 1, Ryszard Jacek 1, Robin M Whyatt 1
PMCID: PMC1241713  PMID: 14594621

Abstract

Experimental evidence has shown that certain phthalates can disrupt endocrine function and induce reproductive and developmental toxicity. However, few data are available on the extent of human exposure to phthalates during pregnancy. As part of the research being conducted by the Columbia Center for Children's Environmental Health, we have measured levels of phthalates in 48-hr personal air samples collected from parallel cohorts of pregnant women in New York, New York, (n = 30) and in Krakow, Poland (n = 30). Spot urine samples were collected during the same 48-hr period from the New York women (n = 25). The following four phthalates or their metabolites were measured in both personal air and urine: diethyl phthalate (DEP), dibutyl phthalate (DBP), diethylhexyl phthalate (DEHP), and butyl benzyl phthalate (BBzP). All were present in 100% of the air and urine samples. Ranges in personal air samples were as follows: DEP (0.26-7.12 microg/m3), DBP (0.11-14.76 microg/m3), DEHP (0.05-1.08 microg/m3), and BBzP (0.00-0.63 microg/m3). The mean personal air concentrations of DBP, di-isobutyl phthalate, and DEHP are higher in Krakow, whereas the mean personal air concentration of DEP is higher in New York. Statistically significant correlations between personal air and urinary levels were found for DEP and monoethyl phthalate (r = 0.42, p < 0.05), DBP and monobutyl phthalate (r = 0.58, p < 0.01), and BBzP and monobenzyl phthalate (r = 0.65, p < 0.01). These results demonstrate considerable phthalate exposures during pregnancy among women in these two cohorts and indicate that inhalation is an important route of exposure.

Full Text

The Full Text of this article is available as a PDF (123.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson W. A., Castle L., Scotter M. J., Massey R. C., Springall C. A biomarker approach to measuring human dietary exposure to certain phthalate diesters. Food Addit Contam. 2001 Dec;18(12):1068–1074. doi: 10.1080/02652030110050113. [DOI] [PubMed] [Google Scholar]
  2. Blount B. C., Milgram K. E., Silva M. J., Malek N. A., Reidy J. A., Needham L. L., Brock J. W. Quantitative detection of eight phthalate metabolites in human urine using HPLC-APCI-MS/MS. Anal Chem. 2000 Sep 1;72(17):4127–4134. doi: 10.1021/ac000422r. [DOI] [PubMed] [Google Scholar]
  3. Blount B. C., Silva M. J., Caudill S. P., Needham L. L., Pirkle J. L., Sampson E. J., Lucier G. W., Jackson R. J., Brock J. W. Levels of seven urinary phthalate metabolites in a human reference population. Environ Health Perspect. 2000 Oct;108(10):979–982. doi: 10.1289/ehp.00108979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cai L. Q., Zhu Y. S., Katz M. D., Herrera C., Baéz J., DeFillo-Ricart M., Shackleton C. H., Imperato-McGinley J. 5 alpha-reductase-2 gene mutations in the Dominican Republic. J Clin Endocrinol Metab. 1996 May;81(5):1730–1735. doi: 10.1210/jcem.81.5.8626825. [DOI] [PubMed] [Google Scholar]
  5. Corton J. C., Bocos C., Moreno E. S., Merritt A., Cattley R. C., Gustafsson J. A. Peroxisome proliferators alter the expression of estrogen-metabolizing enzymes. Biochimie. 1997 Feb-Mar;79(2-3):151–162. doi: 10.1016/s0300-9084(97)81508-8. [DOI] [PubMed] [Google Scholar]
  6. Davis B. J., Maronpot R. R., Heindel J. J. Di-(2-ethylhexyl) phthalate suppresses estradiol and ovulation in cycling rats. Toxicol Appl Pharmacol. 1994 Oct;128(2):216–223. doi: 10.1006/taap.1994.1200. [DOI] [PubMed] [Google Scholar]
  7. Davis B. J., Weaver R., Gaines L. J., Heindel J. J. Mono-(2-ethylhexyl) phthalate suppresses estradiol production independent of FSH-cAMP stimulation in rat granulosa cells. Toxicol Appl Pharmacol. 1994 Oct;128(2):224–228. doi: 10.1006/taap.1994.1201. [DOI] [PubMed] [Google Scholar]
  8. Ema M., Miyawaki E., Kawashima K. Effects of dibutyl phthalate on reproductive function in pregnant and pseudopregnant rats. Reprod Toxicol. 2000 Jan-Feb;14(1):13–19. doi: 10.1016/s0890-6238(99)00066-0. [DOI] [PubMed] [Google Scholar]
  9. Gray L. E., Jr, Ostby J., Furr J., Price M., Veeramachaneni D. N., Parks L. Perinatal exposure to the phthalates DEHP, BBP, and DINP, but not DEP, DMP, or DOTP, alters sexual differentiation of the male rat. Toxicol Sci. 2000 Dec;58(2):350–365. doi: 10.1093/toxsci/58.2.350. [DOI] [PubMed] [Google Scholar]
  10. Heindel J. J., Gulati D. K., Mounce R. C., Russell S. R., Lamb J. C., 4th Reproductive toxicity of three phthalic acid esters in a continuous breeding protocol. Fundam Appl Toxicol. 1989 Apr;12(3):508–518. doi: 10.1016/0272-0590(89)90024-9. [DOI] [PubMed] [Google Scholar]
  11. Katz M. D., Cai L. Q., Zhu Y. S., Herrera C., DeFillo-Ricart M., Shackleton C. H., Imperato-McGinley J. The biochemical and phenotypic characterization of females homozygous for 5 alpha-reductase-2 deficiency. J Clin Endocrinol Metab. 1995 Nov;80(11):3160–3167. doi: 10.1210/jcem.80.11.7593420. [DOI] [PubMed] [Google Scholar]
  12. Kohn M. C., Parham F., Masten S. A., Portier C. J., Shelby M. D., Brock J. W., Needham L. L. Human exposure estimates for phthalates. Environ Health Perspect. 2000 Oct;108(10):A440–A442. doi: 10.1289/ehp.108-a440b. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lovekamp-Swan Tara, Davis Barbara J. Mechanisms of phthalate ester toxicity in the female reproductive system. Environ Health Perspect. 2003 Feb;111(2):139–145. doi: 10.1289/ehp.5658. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lovekamp T. N., Davis B. J. Mono-(2-ethylhexyl) phthalate suppresses aromatase transcript levels and estradiol production in cultured rat granulosa cells. Toxicol Appl Pharmacol. 2001 May 1;172(3):217–224. doi: 10.1006/taap.2001.9156. [DOI] [PubMed] [Google Scholar]
  15. Mylchreest E., Cattley R. C., Foster P. M. Male reproductive tract malformations in rats following gestational and lactational exposure to Di(n-butyl) phthalate: an antiandrogenic mechanism? Toxicol Sci. 1998 May;43(1):47–60. doi: 10.1006/toxs.1998.2436. [DOI] [PubMed] [Google Scholar]
  16. Petersen J. H., Breindahl T. Plasticizers in total diet samples, baby food and infant formulae. Food Addit Contam. 2000 Feb;17(2):133–141. doi: 10.1080/026520300283487. [DOI] [PubMed] [Google Scholar]
  17. Sharman M., Read W. A., Castle L., Gilbert J. Levels of di-(2-ethylhexyl)phthalate and total phthalate esters in milk, cream, butter and cheese. Food Addit Contam. 1994 May-Jun;11(3):375–385. doi: 10.1080/02652039409374236. [DOI] [PubMed] [Google Scholar]
  18. Sharpe R. M. Hormones and testis development and the possible adverse effects of environmental chemicals. Toxicol Lett. 2001 Mar 31;120(1-3):221–232. doi: 10.1016/s0378-4274(01)00298-3. [DOI] [PubMed] [Google Scholar]
  19. Whyatt Robin M., Camann David E., Kinney Patrick L., Reyes Andria, Ramirez Judy, Dietrich Jessica, Diaz Diurka, Holmes Darrell, Perera Frederica P. Residential pesticide use during pregnancy among a cohort of urban minority women. Environ Health Perspect. 2002 May;110(5):507–514. doi: 10.1289/ehp.02110507. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES