Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2003 Nov;111(14):1730–1735. doi: 10.1289/ehp.6429

The sea urchin embryo as a model for mammalian developmental neurotoxicity: ontogenesis of the high-affinity choline transporter and its role in cholinergic trophic activity.

Dan Qiao 1, Lyudmila A Nikitina 1, Gennady A Buznikov 1, Jean M Lauder 1, Frederic J Seidler 1, Theodore A Slotkin 1
PMCID: PMC1241715  PMID: 14594623

Abstract

Embryonic development in the sea urchin requires trophic actions of the same neurotransmitters that participate in mammalian brain assembly. We evaluated the development of the high-affinity choline transporter, which controls acetylcholine synthesis. A variety of developmental neurotoxicants affect this transporter in mammalian brain. [3H]Hemicholinium-3 binding to the transporter was found in the cell membrane fraction at stages from the unfertilized egg to pluteus, with a binding affinity comparable with that seen in mammalian brain. Over the course of development, the concentration of transporter sites rose more than 3-fold, achieving concentrations comparable with those of cholinergically enriched mammalian brain regions. Dimethylaminoethanol (DMAE), a competitive inhibitor of choline transport, elicited dysmorphology beginning at the mid-blastula stage, with anomalies beginning progressively later as the concentration of DMAE was lowered. Pretreatment, cotreatment, or delayed treatment with acetylcholine or choline prevented the adverse effects of DMAE. Because acetylcholine was protective at a lower threshold, the DMAE-induced defects were most likely mediated by its effects on acetylcholine synthesis. Transient removal of the hyaline layer enabled a charged transport inhibitor, hemicholinium-3, to penetrate sufficiently to elicit similar anomalies, which were again prevented by acetylcholine or choline. These results indicate that the developing sea urchin possesses a high-affinity choline transporter analogous to that found in the mammalian brain, and, as in mammals, the functioning of this transporter plays a key role in the developmental, trophic activity of acetylcholine. The sea urchin model may thus be useful in high-throughput screening of suspected developmental neurotoxicants.

Full Text

The Full Text of this article is available as a PDF (956.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alkadhi K. A. Endplate channel actions of a hemicholinium-3 analog, DMAE. Naunyn Schmiedebergs Arch Pharmacol. 1986 Mar;332(3):230–235. doi: 10.1007/BF00504859. [DOI] [PubMed] [Google Scholar]
  2. BUZNIKOV G. A., CHUDAKOVA I. V., ZVEZDINA N. D. THE R OLE OF NEUROHUMOURS IN EARLY EMBRYOGENESIS. I. SEROTONIN CONTENT OF DEVELOPING EMBRYOS OF SEA URCHIN AND LOACH. J Embryol Exp Morphol. 1964 Dec;12:563–573. [PubMed] [Google Scholar]
  3. Barone S., Jr, Das K. P., Lassiter T. L., White L. D. Vulnerable processes of nervous system development: a review of markers and methods. Neurotoxicology. 2000 Feb-Apr;21(1-2):15–36. [PubMed] [Google Scholar]
  4. Buznikov G. A., Bezuglov V. V., Nikitina L. A., Slotkin T. A., Lauder J. M. Kholinergicheskaia reguliatsiia razvitiia u zarodyshei i lichinok morskikh ezhei. Ross Fiziol Zh Im I M Sechenova. 2001 Nov;87(11):1548–1556. [PubMed] [Google Scholar]
  5. Buznikov G. A., Chudakova I. V., Berdysheva L. V., Vyazmina N. M. The role of neurohumors in early embryogenesis. II. Acetylcholine and catecholamine content in developing embryos of sea urchin. J Embryol Exp Morphol. 1968 Aug;20(1):119–128. [PubMed] [Google Scholar]
  6. Buznikov G. A., Kost A. N., Kucherova N. F., Mndzhoyan A. L., Suvorov N. N., Berdysheva L. V. The role of neurohumours in early embryogenesis. 3. Pharmacological analysis of the role of neurohumours in cleavage divisions. J Embryol Exp Morphol. 1970 Jun;23(3):549–569. [PubMed] [Google Scholar]
  7. Buznikov G. A., Nikitina L. A., Bezuglov V. V., Lauder J. M., Padilla S., Slotkin T. A. An invertebrate model of the developmental neurotoxicity of insecticides: effects of chlorpyrifos and dieldrin in sea urchin embryos and larvae. Environ Health Perspect. 2001 Jul;109(7):651–661. doi: 10.1289/ehp.01109651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Buznikov G. A., Rakich L. Cholinoreceptors of early (preneural) sea urchin embryos. Neurosci Behav Physiol. 2000 Jan-Feb;30(1):53–62. doi: 10.1007/BF02461392. [DOI] [PubMed] [Google Scholar]
  9. Buznikov G. A., Shmukler Y. B., Lauder J. M. From oocyte to neuron: do neurotransmitters function in the same way throughout development? Cell Mol Neurobiol. 1996 Oct;16(5):537–559. doi: 10.1007/BF02152056. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Claudio L., Kwa W. C., Russell A. L., Wallinga D. Testing methods for developmental neurotoxicity of environmental chemicals. Toxicol Appl Pharmacol. 2000 Apr 1;164(1):1–14. doi: 10.1006/taap.2000.8890. [DOI] [PubMed] [Google Scholar]
  11. Dale B., de Santis A., Ortolani G., Rasotto M., Santella L. Electrical coupling of blastomeres in early embryos of ascidians and sea urchins. Exp Cell Res. 1982 Aug;140(2):457–461. doi: 10.1016/0014-4827(82)90140-9. [DOI] [PubMed] [Google Scholar]
  12. Dam K., Garcia S. J., Seidler F. J., Slotkin T. A. Neonatal chlorpyrifos exposure alters synaptic development and neuronal activity in cholinergic and catecholaminergic pathways. Brain Res Dev Brain Res. 1999 Aug 5;116(1):9–20. doi: 10.1016/s0165-3806(99)00067-x. [DOI] [PubMed] [Google Scholar]
  13. Falugi C., Diaspro A., Angelini C., Pedrotti M. L., Raimondo M., Robello M. Three-dimensional mapping of cholinergic molecules by confocal laser scanning microscopy in sea urchin larvae. Micron. 2002;33(3):233–239. doi: 10.1016/s0968-4328(01)00018-x. [DOI] [PubMed] [Google Scholar]
  14. Fisher Melanie C., Zeisel Steven H., Mar Mei-Heng, Sadler Thomas W. Perturbations in choline metabolism cause neural tube defects in mouse embryos in vitro. FASEB J. 2002 Apr;16(6):619–621. doi: 10.1096/fj.01-0564fje. [DOI] [PubMed] [Google Scholar]
  15. Gustafson T., Toneby M. On the role of serotonin and acetylcholine in sea urchin morphogenesis. Exp Cell Res. 1970 Sep;62(1):102–117. doi: 10.1016/0014-4827(79)90512-3. [DOI] [PubMed] [Google Scholar]
  16. Happe H. K., Murrin L. C. High-affinity choline transport regulation by drug administration during postnatal development. J Neurochem. 1992 Jun;58(6):2053–2059. doi: 10.1111/j.1471-4159.1992.tb10946.x. [DOI] [PubMed] [Google Scholar]
  17. Hohmann C. F., Berger-Sweeney J. Cholinergic regulation of cortical development and plasticity. New twists to an old story. Perspect Dev Neurobiol. 1998;5(4):401–425. [PubMed] [Google Scholar]
  18. Kane R. E. Hyalin release during normal sea urchin development and its replacement after removal at fertilization. Exp Cell Res. 1973 Oct;81(2):301–311. doi: 10.1016/0014-4827(73)90519-3. [DOI] [PubMed] [Google Scholar]
  19. Klemm N., Kuhar M. J. Post-mortem changes in high affinity choline uptake. J Neurochem. 1979 May;32(5):1487–1494. doi: 10.1111/j.1471-4159.1979.tb11089.x. [DOI] [PubMed] [Google Scholar]
  20. Korobtsov G. N., Sorokin L. V. Change in the membrane potential of fertilized sea urchin eggs under the action of certain neuropharmacological preparations. Sov J Dev Biol. 1974 Nov;4(6):569–571. [PubMed] [Google Scholar]
  21. Lauder J. M. Roles for neurotransmitters in development: possible interaction with drugs during the fetal and neonatal periods. Prog Clin Biol Res. 1985;163C:375–380. [PubMed] [Google Scholar]
  22. Lauder J. M., Schambra U. B. Morphogenetic roles of acetylcholine. Environ Health Perspect. 1999 Feb;107 (Suppl 1):65–69. doi: 10.1289/ehp.99107s165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Pesando D., Huitorel P., Dolcini V., Angelini C., Guidetti P., Falugi C. Biological targets of neurotoxic pesticides analysed by alteration of developmental events in the Mediterranean sea urchin, Paracentrotus lividus. Mar Environ Res. 2003 Feb;55(1):39–57. doi: 10.1016/s0141-1136(02)00215-5. [DOI] [PubMed] [Google Scholar]
  24. Pope C. N. Organophosphorus pesticides: do they all have the same mechanism of toxicity? J Toxicol Environ Health B Crit Rev. 1999 Apr-Jun;2(2):161–181. doi: 10.1080/109374099281205. [DOI] [PubMed] [Google Scholar]
  25. Sanger J. M., Pochapin M. B., Sanger J. W. Midbody sealing after cytokinesis in embryos of the sea urchin Arabacia punctulata. Cell Tissue Res. 1985;240(2):287–292. doi: 10.1007/BF00222337. [DOI] [PubMed] [Google Scholar]
  26. Sastry B. V. Placental toxicology: tobacco smoke, abused drugs, multiple chemical interactions, and placental function. Reprod Fertil Dev. 1991;3(4):355–372. doi: 10.1071/rd9910355. [DOI] [PubMed] [Google Scholar]
  27. Saunders N. R., Møllgård K. Development of the blood-brain barrier. J Dev Physiol. 1984 Feb;6(1):45–57. [PubMed] [Google Scholar]
  28. Sawin S., Brodish P., Carter C. S., Stanton M. E., Lau C. Development of cholinergic neurons in rat brain regions: dose-dependent effects of propylthiouracil-induced hypothyroidism. Neurotoxicol Teratol. 1998 Nov-Dec;20(6):627–635. doi: 10.1016/s0892-0362(98)00020-8. [DOI] [PubMed] [Google Scholar]
  29. Simon J. R., Atweh S., Kuhar M. J. Sodium-dependent high affinity choline uptake: a regulatory step in the synthesis of acetylcholine. J Neurochem. 1976 May;26(5):909–922. doi: 10.1111/j.1471-4159.1976.tb06472.x. [DOI] [PubMed] [Google Scholar]
  30. Slotkin T. A., Cousins M. M., Tate C. A., Seidler F. J. Persistent cholinergic presynaptic deficits after neonatal chlorpyrifos exposure. Brain Res. 2001 Jun 1;902(2):229–243. doi: 10.1016/s0006-8993(01)02387-3. [DOI] [PubMed] [Google Scholar]
  31. Slotkin T. A. Fetal nicotine or cocaine exposure: which one is worse? J Pharmacol Exp Ther. 1998 Jun;285(3):931–945. [PubMed] [Google Scholar]
  32. Smith P. K., Krohn R. I., Hermanson G. T., Mallia A. K., Gartner F. H., Provenzano M. D., Fujimoto E. K., Goeke N. M., Olson B. J., Klenk D. C. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985 Oct;150(1):76–85. doi: 10.1016/0003-2697(85)90442-7. [DOI] [PubMed] [Google Scholar]
  33. Steingart R. A., Abu-Roumi M., Newman M. E., Silverman W. F., Slotkin T. A., Yanai J. Neurobehavioral damage to cholinergic systems caused by prenatal exposure to heroin or phenobarbital: cellular mechanisms and the reversal of deficits by neural grafts. Brain Res Dev Brain Res. 2000 Aug 30;122(2):125–133. doi: 10.1016/s0165-3806(00)00063-8. [DOI] [PubMed] [Google Scholar]
  34. Steingart R. A., Barg J., Maslaton J., Nesher M., Yanai J. Pre- and postsynaptic alterations in the septohippocampal cholinergic innervations after prenatal exposure to drugs. Brain Res Bull. 1998 Jun;46(3):203–209. doi: 10.1016/s0361-9230(97)00454-1. [DOI] [PubMed] [Google Scholar]
  35. Vickroy T. W., Roeske W. R., Yamamura H. I. Sodium-dependent high-affinity binding of [3H]hemicholinium-3 in the rat brain: a potentially selective marker for presynaptic cholinergic sites. Life Sci. 1984 Dec 3;35(23):2335–2343. doi: 10.1016/0024-3205(84)90525-3. [DOI] [PubMed] [Google Scholar]
  36. Weiss E. R., Maness P., Lauder J. M. Why do neurotransmitters act like growth factors? Perspect Dev Neurobiol. 1998;5(4):323–335. [PubMed] [Google Scholar]
  37. Yanai Joseph, Vatury Ori, Slotkin Theodore A. Cell signaling as a target and underlying mechanism for neurobehavioral teratogenesis. Ann N Y Acad Sci. 2002 Jun;965:473–478. doi: 10.1111/j.1749-6632.2002.tb04188.x. [DOI] [PubMed] [Google Scholar]
  38. Zahalka E. A., Seidler F. J., Lappi S. E., McCook E. C., Yanai J., Slotkin T. A. Deficits in development of central cholinergic pathways caused by fetal nicotine exposure: differential effects on choline acetyltransferase activity and [3H]hemicholinium-3 binding. Neurotoxicol Teratol. 1992 Nov-Dec;14(6):375–382. doi: 10.1016/0892-0362(92)90047-e. [DOI] [PubMed] [Google Scholar]
  39. Zahalka E. A., Seidler F. J., Slotkin T. A. Dexamethasone treatment in utero enhances neonatal cholinergic nerve terminal development in rat brain. Res Commun Chem Pathol Pharmacol. 1993 Aug;81(2):191–198. [PubMed] [Google Scholar]
  40. Zhu J., Taniguchi T., Tanaka T., Suzuki F., Muramatsu I. Effects of perinatal nicotine exposure on development of [3H]hemicholinium-3 binding sites in rat neonate brain. Jpn J Pharmacol. 2000 Sep;84(1):32–35. doi: 10.1254/jjp.84.32. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES