Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2003 Dec;111(16):1902–1905. doi: 10.1289/ehp.6055

The level of maternal methemoglobin during pregnancy in an air-polluted environment.

Lucijan Mohorovic 1
PMCID: PMC1241764  PMID: 14644664

Abstract

The objective of this prospective study was to determine if a correlation could be established between the ground-level concentrations of sulfur dioxide and methemoglobin concentrations in pregnant women when a coal-powered thermoelectric power plant was in operation ("dirty" period) and when it was closed ("clean" period). The location of the power plant, Plomin 1, in Labin, Croatia, was taken into consideration. Blood and urine samples of each pregnant woman in the study were tested three times in the clean period (n = 138) and three times in the dirty period (n = 122), with 1 month between each test. I observed a correlation between the increase in mean values of methemoglobin and the ground-level concentration of SO(2) on corresponding dates during the dirty period (r = 0.72, p < 0.01). In the clean period, the negative mean value of methemoglobin was significant (r = -0.60, p <or=0.05), whereas in the dirty period, the positive mean value of methemoglobin was significant (r = 0.73, p 0.01). The increase of maternal methemoglobin could be a useful biomarker to determine when the health of pregnant women is threatened by toxic substances in the environment.

Full Text

The Full Text of this article is available as a PDF (185.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Dekker G. A., Kraayenbrink A. A., Zeeman G. G., van Kamp G. J. Increased plasma levels of the novel vasoconstrictor peptide endothelin in severe pre-eclampsia. Eur J Obstet Gynecol Reprod Biol. 1991 Jul 25;40(3):215–220. doi: 10.1016/0028-2243(91)90120-a. [DOI] [PubMed] [Google Scholar]
  2. Etlik O., Tomur A., Tuncer M., Ridvanağaoğlu A. Y., Andaç O. Protective effect of antioxidant vitamins on red blood cell lipoperoxidation induced by SO2 inhalation. J Basic Clin Physiol Pharmacol. 1997;8(1-2):31–43. doi: 10.1515/jbcpp.1997.8.1-2.31. [DOI] [PubMed] [Google Scholar]
  3. Evain-Brion D. Les deux voies de différenciation du trophoblaste humain. Gynecol Obstet Fertil. 2001 Jul-Aug;29(7-8):497–502. doi: 10.1016/s1297-9589(01)00175-8. [DOI] [PubMed] [Google Scholar]
  4. Ferré F. Régulation de la circulation foetale placentaire. Gynecol Obstet Fertil. 2001 Jul-Aug;29(7-8):512–517. doi: 10.1016/s1297-9589(01)00177-1. [DOI] [PubMed] [Google Scholar]
  5. Gladen B. C., Tabacova S., Baird D. D., Little R. E., Balabaeva L. Variability of lipid hydroperoxides in pregnant and nonpregnant women. Reprod Toxicol. 1999 Jan-Feb;13(1):41–44. doi: 10.1016/s0890-6238(98)00054-9. [DOI] [PubMed] [Google Scholar]
  6. Hemmings D. G., Lowen B., Sherburne R., Sawicki G., Guilbert L. J. Villous trophoblasts cultured on semi-permeable membranes form an effective barrier to the passage of high and low molecular weight particles. Placenta. 2001 Jan;22(1):70–79. doi: 10.1053/plac.2000.0587. [DOI] [PubMed] [Google Scholar]
  7. Jaffe R., Jauniaux E., Hustin J. Maternal circulation in the first-trimester human placenta--myth or reality? Am J Obstet Gynecol. 1997 Mar;176(3):695–705. doi: 10.1016/s0002-9378(97)70572-6. [DOI] [PubMed] [Google Scholar]
  8. Jenkins C., Wilson R., Roberts J., Miller H., McKillop J. H., Walker J. J. Antioxidants: their role in pregnancy and miscarriage. Antioxid Redox Signal. 2000 Fall;2(3):623–628. doi: 10.1089/15230860050192369. [DOI] [PubMed] [Google Scholar]
  9. Lazarus S. C., Wong H. H., Watts M. J., Boushey H. A., Lavins B. J., Minkwitz M. C. The leukotriene receptor antagonist zafirlukast inhibits sulfur dioxide-induced bronchoconstriction in patients with asthma. Am J Respir Crit Care Med. 1997 Dec;156(6):1725–1730. doi: 10.1164/ajrccm.156.6.9608006. [DOI] [PubMed] [Google Scholar]
  10. Little R. E., Gladen B. C. Levels of lipid peroxides in uncomplicated pregnancy: a review of the literature. Reprod Toxicol. 1999 Sep-Oct;13(5):347–352. doi: 10.1016/s0890-6238(99)00033-7. [DOI] [PubMed] [Google Scholar]
  11. Morikawa S., Kurauchi O., Tanaka M., Yoneda M., Uchida K., Itakura A., Furugori K., Mizutani S., Tomoda Y. Increased mitochondrial damage by lipid peroxidation in trophoblast cells of preeclamptic placentas. Biochem Mol Biol Int. 1997 Apr;41(4):767–775. doi: 10.1080/15216549700201801. [DOI] [PubMed] [Google Scholar]
  12. Pertl B., Bianchi D. W. First trimester prenatal diagnosis: fetal cells in the maternal circulation. Semin Perinatol. 1999 Oct;23(5):393–402. doi: 10.1016/s0146-0005(99)80005-6. [DOI] [PubMed] [Google Scholar]
  13. Tabacova S., Balabaeva L., Little R. E. Maternal exposure to exogenous nitrogen compounds and complications of pregnancy. Arch Environ Health. 1997 Sep-Oct;52(5):341–347. doi: 10.1080/00039899709602209. [DOI] [PubMed] [Google Scholar]
  14. Walsh S. W., Vaughan J. E., Wang Y., Roberts L. J., 2nd Placental isoprostane is significantly increased in preeclampsia. FASEB J. 2000 Jul;14(10):1289–1296. doi: 10.1096/fj.14.10.1289. [DOI] [PubMed] [Google Scholar]
  15. Wang Y., Walsh S. W. Placental mitochondria as a source of oxidative stress in pre-eclampsia. Placenta. 1998 Nov;19(8):581–586. doi: 10.1016/s0143-4004(98)90018-2. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES