Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2003 Dec;111(16):1926–1932. doi: 10.1289/ehp.6339

Hazardous effects of effluent from the chrome plating industry: 70 kDa heat shock protein expression as a marker of cellular damage in transgenic Drosophila melanogaster (hsp70-lacZ).

Indranil Mukhopadhyay 1, Daya Krishna Saxena 1, Debapratim Kar Chowdhuri 1
PMCID: PMC1241768  PMID: 14644668

Abstract

Hazardous effects of an effluent from the chrome plating industry were examined by exposing transgenic Drosophila melanogaster (hsp70-lacZ) to various concentrations (0.05, 0.1, 1.0, 10.0, and 100.0 micro L/mL) of the effluent through diet. The emergence pattern of adult flies was affected, along with impaired reproductive performance at the higher dietary concentrations of the effluent. Interestingly, the effect of the effluent was more pronounced in male than in female flies. The effect of the effluent on development of adult flies was concurrent with the expression pattern of the heat shock protein 70 gene (hsp70), both in larval tissues and in the reproductive organs of adult flies. We observed a dose- and time-dependent expression of hsp70 in third instar larvae exposed for different time intervals. Absence of hsp70 expression in larvae exposed to 0.1 micro L/mL of the effluent indicated that this is the highest nontoxic concentration for Drosophila. The stress gene assay in the reproductive organs of adult flies revealed hsp70 expression in the testis of male flies only. However, trypan blue dye exclusion tests in these tissues indicate tissue damage in the male accessory gland of adult flies, which was further confirmed by ultrastructural observations. In the present study we demonstrate the utility of transgenic Drosophila as an alternative animal model for evaluating hazardous effects of the effluent from the chrome plating industry and further reveal the cytoprotective role of hsp70 and its expression as an early marker in environmental risk assessment.

Full Text

The Full Text of this article is available as a PDF (992.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aït-Aïssa S., Porcher J., Arrigo A., Lambré C. Activation of the hsp70 promoter by environmental inorganic and organic chemicals: relationships with cytotoxicity and lipophilicity. Toxicology. 2000 Apr 14;145(2-3):147–157. doi: 10.1016/s0300-483x(00)00145-1. [DOI] [PubMed] [Google Scholar]
  2. Aït-Aïssa Sélim, Pandard Pascal, Magaud Hélène, Arrigo André-Patrick, Thybaud Eric, Porcher Jean-Marc. Evaluation of an in vitro hsp70 induction test for toxicity assessment of complex mixtures: comparison with chemical analyses and ecotoxicity tests. Ecotoxicol Environ Saf. 2003 Jan;54(1):92–104. doi: 10.1016/s0147-6513(02)00026-x. [DOI] [PubMed] [Google Scholar]
  3. Bennett D. A., Waters M. D. Applying biomarker research. Environ Health Perspect. 2000 Sep;108(9):907–910. doi: 10.1289/ehp.00108907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bierkens J. G. Applications and pitfalls of stress-proteins in biomonitoring. Toxicology. 2000 Nov 16;153(1-3):61–72. doi: 10.1016/s0300-483x(00)00304-8. [DOI] [PubMed] [Google Scholar]
  5. Blechinger Scott R., Warren James T., Jr, Kuwada John Y., Krone Patrick H. Developmental toxicology of cadmium in living embryos of a stable transgenic zebrafish line. Environ Health Perspect. 2002 Oct;110(10):1041–1046. doi: 10.1289/ehp.021101041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bonnier G. Experiments on Hybrid Superiority in Drosophila Melanogaster. II. Rate of Development from Egg Hatching to Eclosion. Genetics. 1961 Jan;46(1):85–91. doi: 10.1093/genetics/46.1.85. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Carroll S., Wood E. J. Exposure of human keratinocytes and fibroblasts in vitro to nickel sulphate ions induces synthesis of stress proteins Hsp72 and Hsp90. Acta Derm Venereol. 2000 Mar-Apr;80(2):94–97. [PubMed] [Google Scholar]
  8. Chapman T., Liddle L. F., Kalb J. M., Wolfner M. F., Partridge L. Cost of mating in Drosophila melanogaster females is mediated by male accessory gland products. Nature. 1995 Jan 19;373(6511):241–244. doi: 10.1038/373241a0. [DOI] [PubMed] [Google Scholar]
  9. Chen P. S., Stumm-Zollinger E., Aigaki T., Balmer J., Bienz M., Böhlen P. A male accessory gland peptide that regulates reproductive behavior of female D. melanogaster. Cell. 1988 Jul 29;54(3):291–298. doi: 10.1016/0092-8674(88)90192-4. [DOI] [PubMed] [Google Scholar]
  10. Chowdhuri D. K., Nazir A., Saxena D. K. Effect of three chlorinated pesticides on hsromega stress gene in transgenic Drosophila melanogaster. J Biochem Mol Toxicol. 2001;15(4):173–186. doi: 10.1002/jbt.15. [DOI] [PubMed] [Google Scholar]
  11. De Maio A. Heat shock proteins: facts, thoughts, and dreams. Shock. 1999 Jan;11(1):1–12. doi: 10.1097/00024382-199901000-00001. [DOI] [PubMed] [Google Scholar]
  12. DiDomenico B. J., Bugaisky G. E., Lindquist S. The heat shock response is self-regulated at both the transcriptional and posttranscriptional levels. Cell. 1982 Dec;31(3 Pt 2):593–603. doi: 10.1016/0092-8674(82)90315-4. [DOI] [PubMed] [Google Scholar]
  13. Dix D. J., Hong R. L. Protective mechanisms in germ cells: stress proteins in spermatogenesis. Adv Exp Med Biol. 1998;444:137–144. doi: 10.1007/978-1-4899-0089-0_16. [DOI] [PubMed] [Google Scholar]
  14. Feder M. E., Hofmann G. E. Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu Rev Physiol. 1999;61:243–282. doi: 10.1146/annurev.physiol.61.1.243. [DOI] [PubMed] [Google Scholar]
  15. Feige U., Polla B. S. Hsp70--a multi-gene, multi-structure, multi-function family with potential clinical applications. Experientia. 1994 Nov 30;50(11-12):979–986. doi: 10.1007/BF01923452. [DOI] [PubMed] [Google Scholar]
  16. Gayathri M. V., Krishnamurthy N. B. Studies on the toxicity of the mercurial fungicide Agallol 3 in Drosophila melanogaster. Environ Res. 1981 Feb;24(1):89–95. doi: 10.1016/0013-9351(81)90135-3. [DOI] [PubMed] [Google Scholar]
  17. Gómez C. E., Contento L., Carsen A. E. Toxicity tests to assess pollutants removal during wastewater treatment and the quality of receiving waters in Argentina. Environ Toxicol. 2001 Jun;16(3):217–224. doi: 10.1002/tox.1027. [DOI] [PubMed] [Google Scholar]
  18. Halloran M. C., Sato-Maeda M., Warren J. T., Su F., Lele Z., Krone P. H., Kuwada J. Y., Shoji W. Laser-induced gene expression in specific cells of transgenic zebrafish. Development. 2000 May;127(9):1953–1960. doi: 10.1242/dev.127.9.1953. [DOI] [PubMed] [Google Scholar]
  19. Hightower L. E. Heat shock, stress proteins, chaperones, and proteotoxicity. Cell. 1991 Jul 26;66(2):191–197. doi: 10.1016/0092-8674(91)90611-2. [DOI] [PubMed] [Google Scholar]
  20. Hirsch Helmut V. B., Mercer John, Sambaziotis Hera, Huber Michael, Stark Diane T., Torno-Morley Tara, Hollocher Kurt, Ghiradella Helen, Ruden Douglas M. Behavioral effects of chronic exposure to low levels of lead in Drosophila melanogaster. Neurotoxicology. 2003 Jun;24(3):435–442. doi: 10.1016/S0161-813X(03)00021-4. [DOI] [PubMed] [Google Scholar]
  21. Krebs R. A., Feder M. E. Tissue-specific variation in Hsp70 expression and thermal damage in Drosophila melanogaster larvae. J Exp Biol. 1997 Jul;200(Pt 14):2007–2015. doi: 10.1242/jeb.200.14.2007. [DOI] [PubMed] [Google Scholar]
  22. Lakhotia S. C., Mukherjee T. Specific activation of puff 93D of Drosophila melanogaster by benzamide and the effect of benzamide treatment on the heat shock induced puffing activity. Chromosoma. 1980;81(1):125–136. doi: 10.1007/BF00292427. [DOI] [PubMed] [Google Scholar]
  23. Lis J. T., Simon J. A., Sutton C. A. New heat shock puffs and beta-galactosidase activity resulting from transformation of Drosophila with an hsp70-lacZ hybrid gene. Cell. 1983 Dec;35(2 Pt 1):403–410. doi: 10.1016/0092-8674(83)90173-3. [DOI] [PubMed] [Google Scholar]
  24. Macario A. J., Lange M., Ahring B. K., Conway de Macario E. Stress genes and proteins in the archaea. Microbiol Mol Biol Rev. 1999 Dec;63(4):923-67, table of contents. doi: 10.1128/mmbr.63.4.923-967.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Mukhopadhyay I., Nazir A., Mahmood K., Saxena D. K., Das M., Khanna S. K., Chowdhuri D. K. Toxicity of argemone oil: effect on hsp70 expression and tissue damage in transgenic Drosophila melanogaster (hsp70-lacZ) Bg9. Cell Biol Toxicol. 2002;18(1):1–11. doi: 10.1023/a:1014433711554. [DOI] [PubMed] [Google Scholar]
  26. Mukhopadhyay Indranil, Nazir Aamir, Saxena D. K., Chowdhuri D. Kar. Toxicity of cypermethrin: hsp70 as a biomarker of response in transgenic Drosophila. Biomarkers. 2002 Nov-Dec;7(6):501–510. doi: 10.1080/1354750021000034852. [DOI] [PubMed] [Google Scholar]
  27. Nazir A., Mukhopadhyay I., Saxena D. K., Kar Chowdhuri D. Chlorpyrifos-induced hsp70 expression and effect on reproductive performance in transgenic Drosophila melanogaster (hsp70-lacZ) Bg9. Arch Environ Contam Toxicol. 2001 Nov;41(4):443–449. doi: 10.1007/s002440010270. [DOI] [PubMed] [Google Scholar]
  28. Nazir Aamir, Saxena Daya Krishna, Kar Chowdhuri Debapratim. Induction of hsp70 in transgenic Drosophila: biomarker of exposure against phthalimide group of chemicals. Biochim Biophys Acta. 2003 May 2;1621(2):218–225. doi: 10.1016/s0304-4165(03)00060-6. [DOI] [PubMed] [Google Scholar]
  29. O'Kane C. J., Gehring W. J. Detection in situ of genomic regulatory elements in Drosophila. Proc Natl Acad Sci U S A. 1987 Dec;84(24):9123–9127. doi: 10.1073/pnas.84.24.9123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Radlowska M., Pempkowiak J. Stress-70 as indicator of heavy metals accumulation in blue mussel Mytilus edulis. Environ Int. 2002 Mar;27(8):605–608. doi: 10.1016/s0160-4120(01)00117-9. [DOI] [PubMed] [Google Scholar]
  31. Ryan J. A., Hightower L. E. Stress proteins as molecular biomarkers for environmental toxicology. EXS. 1996;77:411–424. doi: 10.1007/978-3-0348-9088-5_28. [DOI] [PubMed] [Google Scholar]
  32. Stone D. E., Craig E. A. Self-regulation of 70-kilodalton heat shock proteins in Saccharomyces cerevisiae. Mol Cell Biol. 1990 Apr;10(4):1622–1632. doi: 10.1128/mcb.10.4.1622. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Tully D. B., Collins B. J., Overstreet J. D., Smith C. S., Dinse G. E., Mumtaz M. M., Chapin R. E. Effects of arsenic, cadmium, chromium, and lead on gene expression regulated by a battery of 13 different promoters in recombinant HepG2 cells. Toxicol Appl Pharmacol. 2000 Oct 15;168(2):79–90. doi: 10.1006/taap.2000.9014. [DOI] [PubMed] [Google Scholar]
  34. Velazquez J. M., Lindquist S. hsp70: nuclear concentration during environmental stress and cytoplasmic storage during recovery. Cell. 1984 Mar;36(3):655–662. doi: 10.1016/0092-8674(84)90345-3. [DOI] [PubMed] [Google Scholar]
  35. Wolfner M. F. Tokens of love: functions and regulation of Drosophila male accessory gland products. Insect Biochem Mol Biol. 1997 Mar;27(3):179–192. doi: 10.1016/s0965-1748(96)00084-7. [DOI] [PubMed] [Google Scholar]
  36. Zhang G. F., Driouich A., Staehelin L. A. Effect of monensin on plant Golgi: re-examination of the monensin-induced changes in cisternal architecture and functional activities of the Golgi apparatus of sycamore suspension-cultured cells. J Cell Sci. 1993 Mar;104(Pt 3):819–831. doi: 10.1242/jcs.104.3.819. [DOI] [PubMed] [Google Scholar]
  37. de Pomerai D. Heat-shock proteins as biomarkers of pollution. Hum Exp Toxicol. 1996 Apr;15(4):279–285. doi: 10.1177/096032719601500401. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES