Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2004 Feb;112(2):266–271. doi: 10.1289/ehp.6014

Hazard identification and predictability of children's health risk from animal data.

LaRonda L Morford 1, Judith W Henck 1, William J Breslin 1, John M DeSesso 1
PMCID: PMC1241837  PMID: 14754582

Abstract

Children differ from adults both physiologically and behaviorally. These differences can affect how and when exposures to xenobiotics occur and the resulting responses. Testing using animal models may be used to predict whether children display novel toxicities not observed in adults or whether children are more or less sensitive to known toxicities. Historically, evaluation of developmental toxicity has focused on gestational exposures and morphological changes resulting from this exposure. Functional consequences of gestational exposure and postnatal exposure have not been as well studied. Difficulties with postnatal toxicity evaluations include divergent differentiation of structure, function and physiology across species, lack of understanding of species differences in functional ontogeny, and lack of common end points and milestones across species.

Full Text

The Full Text of this article is available as a PDF (131.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Acuff-Smith K. D., Schilling M. A., Fisher J. E., Vorhees C. V. Stage-specific effects of prenatal d-methamphetamine exposure on behavioral and eye development in rats. Neurotoxicol Teratol. 1996 Mar-Apr;18(2):199–215. doi: 10.1016/0892-0362(95)02015-2. [DOI] [PubMed] [Google Scholar]
  2. Adams J., Barone S., Jr, LaMantia A., Philen R., Rice D. C., Spear L., Susser E. Workshop to identify critical windows of exposure for children's health: neurobehavioral work group summary. Environ Health Perspect. 2000 Jun;108 (Suppl 3):535–544. doi: 10.1289/ehp.00108s3535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Daston George, Faustman Elaine, Ginsberg Gary, Fenner-Crisp Penny, Olin Stephen, Sonawane Babasaheb, Bruckner James, Breslin William, McLaughlin Tara J. A framework for assessing risks to children from exposure to environmental agents. Environ Health Perspect. 2004 Feb;112(2):238–256. doi: 10.1289/ehp.6182. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Frankos V. H. FDA perspectives on the use of teratology data for human risk assessment. Fundam Appl Toxicol. 1985 Aug;5(4):615–625. doi: 10.1016/0272-0590(85)90185-x. [DOI] [PubMed] [Google Scholar]
  5. Hemminki K., Vineis P. Extrapolation of the evidence on teratogenicity of chemicals between humans and experimental animals: chemicals other than drugs. Teratog Carcinog Mutagen. 1985;5(4):251–318. doi: 10.1002/tcm.1770050405. [DOI] [PubMed] [Google Scholar]
  6. Holson J. F., Desesso J. M., Jacobson C. F., Farr C. H. Appropriate use of animal models in the assessment of risk during prenatal development: an illustration using inorganic arsenic. Teratology. 2000 Jul;62(1):51–71. doi: 10.1002/1096-9926(200007)62:1<51::AID-TERA10>3.0.CO;2-T. [DOI] [PubMed] [Google Scholar]
  7. Jelovsek F. R., Mattison D. R., Chen J. J. Prediction of risk for human developmental toxicity: how important are animal studies for hazard identification? Obstet Gynecol. 1989 Oct;74(4):624–636. [PubMed] [Google Scholar]
  8. Kimmel C. A., Makris S. L. Recent developments in regulatory requirements for developmental toxicology. Toxicol Lett. 2001 Mar 31;120(1-3):73–82. doi: 10.1016/s0378-4274(01)00309-5. [DOI] [PubMed] [Google Scholar]
  9. Newman L. M., Johnson E. M., Staples R. E. Assessment of the effectiveness of animal developmental toxicity testing for human safety. Reprod Toxicol. 1993 Jul-Aug;7(4):359–390. doi: 10.1016/0890-6238(93)90025-3. [DOI] [PubMed] [Google Scholar]
  10. OTIS E. M., BRENT R. Equivalent ages in mouse and human embryos. Anat Rec. 1954 Sep;120(1):33–63. doi: 10.1002/ar.1091200104. [DOI] [PubMed] [Google Scholar]
  11. Rice D., Barone S., Jr Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models. Environ Health Perspect. 2000 Jun;108 (Suppl 3):511–533. doi: 10.1289/ehp.00108s3511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Rodier P. M. Chronology of neuron development: animal studies and their clinical implications. Dev Med Child Neurol. 1980 Aug;22(4):525–545. doi: 10.1111/j.1469-8749.1980.tb04363.x. [DOI] [PubMed] [Google Scholar]
  13. Schardein J. L., Keller K. A. Potential human developmental toxicants and the role of animal testing in their identification and characterization. Crit Rev Toxicol. 1989;19(3):251–339. doi: 10.3109/10408448909037473. [DOI] [PubMed] [Google Scholar]
  14. Schardein J. L., Schwetz B. A., Kenel M. F. Species sensitivities and prediction of teratogenic potential. Environ Health Perspect. 1985 Sep;61:55–67. doi: 10.1289/ehp.856155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Vorhees C. V., Ahrens K. G., Acuff-Smith K. D., Schilling M. A., Fisher J. E. Methamphetamine exposure during early postnatal development in rats: I. Acoustic startle augmentation and spatial learning deficits. Psychopharmacology (Berl) 1994 Apr;114(3):392–401. doi: 10.1007/BF02249328. [DOI] [PubMed] [Google Scholar]
  16. WILSON J. G. Experimental studies on congenital malformations. J Chronic Dis. 1959 Aug;10(2):111–130. doi: 10.1016/0021-9681(59)90026-8. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES