Abstract
Developmental exposure to chlorpyrifos (CPF) alters the function of a wide variety of neural systems. In the present study we evaluated the effects in adulthood of CPF exposure of rats during different developmental windows, using the adenylyl cyclase (AC) signaling cascade, which mediates the cellular responses to numerous neurotransmitters. Animals were exposed on gestational days (GD) 9-12 or 17-20 or on postnatal days (PN) 1-4 or 11-14 and assessed at PN60. In addition to basal AC activity, we evaluated the responses to direct AC stimulants (forskolin, Mn2+) and to isoproterenol, which activates signaling through ss-adrenoceptors coupled to stimulatory G-proteins. CPF exposure in any of the four periods elicited significant changes in AC signaling in a wide variety of brain regions in adulthood. In general, GD9-12 was the least sensitive stage, requiring doses above the threshold for impaired maternal weight gain, whereas effects were obtained at subtoxic doses for all other regimens. Most of the effects were heterologous, involving signaling elements downstream from the receptors, and thus shared by multiple stimulants; superimposed on this basic pattern, there were also selective alterations in receptor-mediated responses, in G-protein function, and in AC expression and subtypes. Exposures conducted at GD17-20 and later all produced sex-selective alterations. These results suggest that developmental exposure to CPF elicits long-lasting alterations in cell-signaling cascades that are shared by multiple neurotransmitter and hormonal inputs; the resultant abnormalities of synaptic communication are thus likely to occur in widespread neural circuits and their corresponding behaviors.
Full Text
The Full Text of this article is available as a PDF (149.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aldridge Justin E., Seidler Frederic J., Meyer Armando, Thillai Indira, Slotkin Theodore A. Serotonergic systems targeted by developmental exposure to chlorpyrifos: effects during different critical periods. Environ Health Perspect. 2003 Nov;111(14):1736–1743. doi: 10.1289/ehp.6489. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Andersen Helle Raun, Vinggaard Anne Marie, Rasmussen Thomas Hoj, Gjermandsen Irene Marianne, Bonefeld-Jørgensen Eva Cecilie. Effects of currently used pesticides in assays for estrogenicity, androgenicity, and aromatase activity in vitro. Toxicol Appl Pharmacol. 2002 Feb 15;179(1):1–12. doi: 10.1006/taap.2001.9347. [DOI] [PubMed] [Google Scholar]
- Auger A. P. Sex differences in the developing brain: crossroads in the phosphorylation of cAMP response element binding protein. J Neuroendocrinol. 2003 Jun;15(6):622–627. doi: 10.1046/j.1365-2826.2003.01041.x. [DOI] [PubMed] [Google Scholar]
- Auman J. T., Seidler F. J., Slotkin T. A. Neonatal chlorpyrifos exposure targets multiple proteins governing the hepatic adenylyl cyclase signaling cascade: implications for neurotoxicity. Brain Res Dev Brain Res. 2000 May 11;121(1):19–27. doi: 10.1016/s0165-3806(00)00021-3. [DOI] [PubMed] [Google Scholar]
- Auman J. T., Seidler F. J., Tate C. A., Slotkin T. A. Beta-adrenoceptor-mediated cell signaling in the neonatal heart and liver: responses to terbutaline. Am J Physiol Regul Integr Comp Physiol. 2001 Dec;281(6):R1895–R1901. doi: 10.1152/ajpregu.2001.281.6.R1895. [DOI] [PubMed] [Google Scholar]
- Barone S., Jr, Das K. P., Lassiter T. L., White L. D. Vulnerable processes of nervous system development: a review of markers and methods. Neurotoxicology. 2000 Feb-Apr;21(1-2):15–36. [PubMed] [Google Scholar]
- Bhat N. R., Shanker G., Pieringer R. A. Cell proliferation in growing cultures of dissociated embryonic mouse brain: macromolecule and ornithine decarboxylase synthesis and regulation by hormones and drugs. J Neurosci Res. 1983;10(2):221–230. doi: 10.1002/jnr.490100210. [DOI] [PubMed] [Google Scholar]
- Buznikov G. A., Bezuglov V. V., Nikitina L. A., Slotkin T. A., Lauder J. M. Kholinergicheskaia reguliatsiia razvitiia u zarodyshei i lichinok morskikh ezhei. Ross Fiziol Zh Im I M Sechenova. 2001 Nov;87(11):1548–1556. [PubMed] [Google Scholar]
- Campbell C. G., Seidler F. J., Slotkin T. A. Chlorpyrifos interferes with cell development in rat brain regions. Brain Res Bull. 1997;43(2):179–189. doi: 10.1016/s0361-9230(96)00436-4. [DOI] [PubMed] [Google Scholar]
- Claycomb W. C. Biochemical aspects of cardiac muscle differentiation. Possible control of deoxyribonucleic acid synthesis and cell differentiation by adrenergic innervation and cyclic adenosine 3':5'-monophosphate. J Biol Chem. 1976 Oct 10;251(19):6082–6089. [PubMed] [Google Scholar]
- Crumpton T. L., Seidler F. J., Slotkin T. A. Developmental neurotoxicity of chlorpyrifos in vivo and in vitro: effects on nuclear transcription factors involved in cell replication and differentiation. Brain Res. 2000 Feb 28;857(1-2):87–98. doi: 10.1016/s0006-8993(99)02357-4. [DOI] [PubMed] [Google Scholar]
- Dam K., Garcia S. J., Seidler F. J., Slotkin T. A. Neonatal chlorpyrifos exposure alters synaptic development and neuronal activity in cholinergic and catecholaminergic pathways. Brain Res Dev Brain Res. 1999 Aug 5;116(1):9–20. doi: 10.1016/s0165-3806(99)00067-x. [DOI] [PubMed] [Google Scholar]
- Dam K., Seidler F. J., Slotkin T. A. Developmental neurotoxicity of chlorpyrifos: delayed targeting of DNA synthesis after repeated administration. Brain Res Dev Brain Res. 1998 Jun 15;108(1-2):39–45. doi: 10.1016/s0165-3806(98)00028-5. [DOI] [PubMed] [Google Scholar]
- Das K. P., Barone S., Jr Neuronal differentiation in PC12 cells is inhibited by chlorpyrifos and its metabolites: is acetylcholinesterase inhibition the site of action? Toxicol Appl Pharmacol. 1999 Nov 1;160(3):217–230. doi: 10.1006/taap.1999.8767. [DOI] [PubMed] [Google Scholar]
- Dreyfus C. F. Neurotransmitters and neurotrophins collaborate to influence brain development. Perspect Dev Neurobiol. 1998;5(4):389–399. [PubMed] [Google Scholar]
- Gao M. H., Lai N. C., Roth D. M., Zhou J., Zhu J., Anzai T., Dalton N., Hammond H. K. Adenylylcyclase increases responsiveness to catecholamine stimulation in transgenic mice. Circulation. 1999 Mar 30;99(12):1618–1622. doi: 10.1161/01.cir.99.12.1618. [DOI] [PubMed] [Google Scholar]
- Gao M., Ping P., Post S., Insel P. A., Tang R., Hammond H. K. Increased expression of adenylylcyclase type VI proportionately increases beta-adrenergic receptor-stimulated production of cAMP in neonatal rat cardiac myocytes. Proc Natl Acad Sci U S A. 1998 Feb 3;95(3):1038–1043. doi: 10.1073/pnas.95.3.1038. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Garcia S. J., Seidler F. J., Crumpton T. L., Slotkin T. A. Does the developmental neurotoxicity of chlorpyrifos involve glial targets? Macromolecule synthesis, adenylyl cyclase signaling, nuclear transcription factors, and formation of reactive oxygen in C6 glioma cells. Brain Res. 2001 Feb 9;891(1-2):54–68. doi: 10.1016/s0006-8993(00)03189-9. [DOI] [PubMed] [Google Scholar]
- Garcia Stephanie J., Seidler Frederic J., Qiao Dan, Slotkin Theodore A. Chlorpyrifos targets developing glia: effects on glial fibrillary acidic protein. Brain Res Dev Brain Res. 2002 Feb 28;133(2):151–161. doi: 10.1016/s0165-3806(02)00283-3. [DOI] [PubMed] [Google Scholar]
- Garcia Stephanie J., Seidler Frederic J., Slotkin Theodore A. Developmental neurotoxicity elicited by prenatal or postnatal chlorpyrifos exposure: effects on neurospecific proteins indicate changing vulnerabilities. Environ Health Perspect. 2003 Mar;111(3):297–303. doi: 10.1289/ehp.5791. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gaudin C., Ishikawa Y., Wight D. C., Mahdavi V., Nadal-Ginard B., Wagner T. E., Vatner D. E., Homcy C. J. Overexpression of Gs alpha protein in the hearts of transgenic mice. J Clin Invest. 1995 Apr;95(4):1676–1683. doi: 10.1172/JCI117843. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guidotti A., Weiss B., Costa E. Adenosine 3',5'-monophosphate concentrations and isoproterenol-induced synthesis of deoxyribonucleic acid in mouse parotid gland. Mol Pharmacol. 1972 Sep;8(5):521–530. [PubMed] [Google Scholar]
- Güven M., Bayram F., Unlühizarci K., Keleştimur F. Endocrine changes in patients with acute organophosphate poisoning. Hum Exp Toxicol. 1999 Oct;18(10):598–601. doi: 10.1191/096032799678839419. [DOI] [PubMed] [Google Scholar]
- Howard Marcia D., Pope Carey N. In vitro effects of chlorpyrifos, parathion, methyl parathion and their oxons on cardiac muscarinic receptor binding in neonatal and adult rats. Toxicology. 2002 Jan 15;170(1-2):1–10. doi: 10.1016/s0300-483x(01)00498-x. [DOI] [PubMed] [Google Scholar]
- Huff R. A., Abou-Donia M. B. In vitro effect of chlorpyrifos oxon on muscarinic receptors and adenylate cyclase. Neurotoxicology. 1995 Summer;16(2):281–290. [PubMed] [Google Scholar]
- Huff R. A., Abu-Qare A. W., Abou-Donia M. B. Effects of sub-chronic in vivo chlorpyrifos exposure on muscarinic receptors and adenylate cyclase of rat striatum. Arch Toxicol. 2001 Oct;75(8):480–486. doi: 10.1007/s002040100269. [DOI] [PubMed] [Google Scholar]
- Huff R. A., Corcoran J. J., Anderson J. K., Abou-Donia M. B. Chlorpyrifos oxon binds directly to muscarinic receptors and inhibits cAMP accumulation in rat striatum. J Pharmacol Exp Ther. 1994 Apr;269(1):329–335. [PubMed] [Google Scholar]
- Hultgãrdh-Nilsson A., Querol-Ferrer V., Jonzon B., Krondahl U., Nilsson J. Cyclic AMP, early response gene expression, and DNA synthesis in rat smooth muscle cells. Exp Cell Res. 1994 Sep;214(1):297–302. doi: 10.1006/excr.1994.1261. [DOI] [PubMed] [Google Scholar]
- Johnson D. E., Seidler F. J., Slotkin T. A. Early biochemical detection of delayed neurotoxicity resulting from developmental exposure to chloropyrifos. Brain Res Bull. 1998;45(2):143–147. doi: 10.1016/s0361-9230(97)00329-8. [DOI] [PubMed] [Google Scholar]
- Karoor V., Shih M., Tholanikunnel B., Malbon C. C. Regulating expression and function of G-protein-linked receptors. Prog Neurobiol. 1996 Apr;48(6):555–568. doi: 10.1016/0301-0082(96)00004-4. [DOI] [PubMed] [Google Scholar]
- Kohout Trudy A., Lefkowitz Robert J. Regulation of G protein-coupled receptor kinases and arrestins during receptor desensitization. Mol Pharmacol. 2003 Jan;63(1):9–18. doi: 10.1124/mol.63.1.9. [DOI] [PubMed] [Google Scholar]
- Kulkarni Vaishali A., Jha Shanker, Vaidya Vidita A. Depletion of norepinephrine decreases the proliferation, but does not influence the survival and differentiation, of granule cell progenitors in the adult rat hippocampus. Eur J Neurosci. 2002 Nov;16(10):2008–2012. doi: 10.1046/j.1460-9568.2002.02268.x. [DOI] [PubMed] [Google Scholar]
- Kwon J. H., Eves E. M., Farrell S., Segovia J., Tobin A. J., Wainer B. H., Downen M. Beta-adrenergic receptor activation promotes process outgrowth in an embryonic rat basal forebrain cell line and in primary neurons. Eur J Neurosci. 1996 Oct;8(10):2042–2055. doi: 10.1111/j.1460-9568.1996.tb00724.x. [DOI] [PubMed] [Google Scholar]
- Landrigan P. J., Claudio L., Markowitz S. B., Berkowitz G. S., Brenner B. L., Romero H., Wetmur J. G., Matte T. D., Gore A. C., Godbold J. H. Pesticides and inner-city children: exposures, risks, and prevention. Environ Health Perspect. 1999 Jun;107 (Suppl 3):431–437. doi: 10.1289/ehp.99107s3431. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Landrigan P. J. Pesticides and polychlorinated biphenyls (PCBs): an analysis of the evidence that they impair children's neurobehavioral development. Mol Genet Metab. 2001 May;73(1):11–17. doi: 10.1006/mgme.2001.3177. [DOI] [PubMed] [Google Scholar]
- Levin E. D., Addy N., Nakajima A., Christopher N. C., Seidler F. J., Slotkin T. A. Persistent behavioral consequences of neonatal chlorpyrifos exposure in rats. Brain Res Dev Brain Res. 2001 Sep 23;130(1):83–89. doi: 10.1016/s0165-3806(01)00215-2. [DOI] [PubMed] [Google Scholar]
- Levin Edward D., Addy Nii, Baruah Avanti, Elias Alana, Christopher N. Channelle, Seidler Frederic J., Slotkin Theodore A. Prenatal chlorpyrifos exposure in rats causes persistent behavioral alterations. Neurotoxicol Teratol. 2002 Nov-Dec;24(6):733–741. doi: 10.1016/s0892-0362(02)00272-6. [DOI] [PubMed] [Google Scholar]
- Liu Jing, Chakraborti Tamal, Pope Carey. In vitro effects of organophosphorus anticholinesterases on muscarinic receptor-mediated inhibition of acetylcholine release in rat striatum. Toxicol Appl Pharmacol. 2002 Jan 15;178(2):102–108. doi: 10.1006/taap.2001.9326. [DOI] [PubMed] [Google Scholar]
- May M. Disturbing behavior: neurotoxic effects in children. Environ Health Perspect. 2000 Jun;108(6):A262–A267. doi: 10.1289/ehp.108-a262. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McCarthy M. M. Molecular aspects of sexual differentiation of the rodent brain. Psychoneuroendocrinology. 1994;19(5-7):415–427. doi: 10.1016/0306-4530(94)90029-9. [DOI] [PubMed] [Google Scholar]
- Meyer Armando, Seidler Frederic J., Cousins Mandy M., Slotkin Theodore A. Developmental neurotoxicity elicited by gestational exposure to chlorpyrifos: when is adenylyl cyclase a target? Environ Health Perspect. 2003 Dec;111(16):1871–1876. doi: 10.1289/ehp.6468. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mong J. A., McCarthy M. M. Steroid-induced developmental plasticity in hypothalamic astrocytes: implications for synaptic patterning. J Neurobiol. 1999 Sep 15;40(4):602–619. doi: 10.1002/(sici)1097-4695(19990915)40:4<602::aid-neu14>3.0.co;2-o. [DOI] [PubMed] [Google Scholar]
- Morris G., Seidler F. J., Slotkin T. A. Stimulation of ornithine decarboxylase by histamine or norepinephrine in brain regions of the developing rat: evidence for biogenic amines as trophic agents in neonatal brain development. Life Sci. 1983 Apr 4;32(14):1565–1571. doi: 10.1016/0024-3205(83)90862-7. [DOI] [PubMed] [Google Scholar]
- Olivier K., Jr, Liu J., Pope C. Inhibition of forskolin-stimulated cAMP formation in vitro by paraoxon and chlorpyrifos oxon in cortical slices from neonatal, juvenile, and adult rats. J Biochem Mol Toxicol. 2001;15(5):263–269. doi: 10.1002/jbt.10002. [DOI] [PubMed] [Google Scholar]
- Ostrom R. S., Violin J. D., Coleman S., Insel P. A. Selective enhancement of beta-adrenergic receptor signaling by overexpression of adenylyl cyclase type 6: colocalization of receptor and adenylyl cyclase in caveolae of cardiac myocytes. Mol Pharmacol. 2000 May;57(5):1075–1079. [PubMed] [Google Scholar]
- Pope C. N., Chakraborti T. K., Chapman M. L., Farrar J. D., Arthun D. Comparison of in vivo cholinesterase inhibition in neonatal and adult rats by three organophosphorothioate insecticides. Toxicology. 1991;68(1):51–61. doi: 10.1016/0300-483x(91)90061-5. [DOI] [PubMed] [Google Scholar]
- Pope C. N., Chakraborti T. K. Dose-related inhibition of brain and plasma cholinesterase in neonatal and adult rats following sublethal organophosphate exposures. Toxicology. 1992;73(1):35–43. doi: 10.1016/0300-483x(92)90168-e. [DOI] [PubMed] [Google Scholar]
- Pope C. N. Organophosphorus pesticides: do they all have the same mechanism of toxicity? J Toxicol Environ Health B Crit Rev. 1999 Apr-Jun;2(2):161–181. doi: 10.1080/109374099281205. [DOI] [PubMed] [Google Scholar]
- Popovik E., Haynes L. W. Survival and mitogenesis of neuroepithelial cells are influenced by noradrenergic but not cholinergic innervation in cultured embryonic rat neopallium. Brain Res. 2000 Jan 24;853(2):227–235. doi: 10.1016/s0006-8993(99)02242-8. [DOI] [PubMed] [Google Scholar]
- Qiao Dan, Seidler Frederic J., Padilla Stephanie, Slotkin Theodore A. Developmental neurotoxicity of chlorpyrifos: what is the vulnerable period? Environ Health Perspect. 2002 Nov;110(11):1097–1103. doi: 10.1289/ehp.021101097. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Qiao Dan, Seidler Frederic J., Tate Charlotte A., Cousins Mandy M., Slotkin Theodore A. Fetal chlorpyrifos exposure: adverse effects on brain cell development and cholinergic biomarkers emerge postnatally and continue into adolescence and adulthood. Environ Health Perspect. 2003 Apr;111(4):536–544. doi: 10.1289/ehp.5828. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Raines K. W., Seidler F. J., Slotkin T. A. Alterations in serotonin transporter expression in brain regions of rats exposed neonatally to chlorpyrifos. Brain Res Dev Brain Res. 2001 Sep 23;130(1):65–72. doi: 10.1016/s0165-3806(01)00211-5. [DOI] [PubMed] [Google Scholar]
- Rice D., Barone S., Jr Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models. Environ Health Perspect. 2000 Jun;108 (Suppl 3):511–533. doi: 10.1289/ehp.00108s3511. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Richardson Jason, Chambers Janice. Effects of gestational exposure to chlorpyrifos on postnatal central and peripheral cholinergic neurochemistry. J Toxicol Environ Health A. 2003 Feb 14;66(3):275–289. doi: 10.1080/15287390306369. [DOI] [PubMed] [Google Scholar]
- Rodier P. M. Structural--functional relationships in experimentally induced brain damage. Prog Brain Res. 1988;73:335–348. doi: 10.1016/S0079-6123(08)60514-2. [DOI] [PubMed] [Google Scholar]
- Schuh Rosemary A., Lein Pamela J., Beckles Rondell A., Jett David A. Noncholinesterase mechanisms of chlorpyrifos neurotoxicity: altered phosphorylation of Ca2+/cAMP response element binding protein in cultured neurons. Toxicol Appl Pharmacol. 2002 Jul 15;182(2):176–185. doi: 10.1006/taap.2002.9445. [DOI] [PubMed] [Google Scholar]
- Schwartz J. P., Nishiyama N. Neurotrophic factor gene expression in astrocytes during development and following injury. Brain Res Bull. 1994;35(5-6):403–407. doi: 10.1016/0361-9230(94)90151-1. [DOI] [PubMed] [Google Scholar]
- Shaywitz A. J., Greenberg M. E. CREB: a stimulus-induced transcription factor activated by a diverse array of extracellular signals. Annu Rev Biochem. 1999;68:821–861. doi: 10.1146/annurev.biochem.68.1.821. [DOI] [PubMed] [Google Scholar]
- Slotkin T. A., Baker F. E., Dobbins S. S., Eylers J. P., Lappi S. E., Seidler F. J. Prenatal terbutaline exposure in the rat: selective effects on development of noradrenergic projections to cerebellum. Brain Res Bull. 1989 Oct-Nov;23(4-5):263–265. doi: 10.1016/0361-9230(89)90206-2. [DOI] [PubMed] [Google Scholar]
- Slotkin T. A., Cousins M. M., Tate C. A., Seidler F. J. Persistent cholinergic presynaptic deficits after neonatal chlorpyrifos exposure. Brain Res. 2001 Jun 1;902(2):229–243. doi: 10.1016/s0006-8993(01)02387-3. [DOI] [PubMed] [Google Scholar]
- Slotkin T. A. Developmental cholinotoxicants: nicotine and chlorpyrifos. Environ Health Perspect. 1999 Feb;107 (Suppl 1):71–80. doi: 10.1289/ehp.99107s171. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Slotkin T. A., Tate C. A., Cousins M. M., Seidler F. J. Beta-adrenoceptor signaling in the developing brain: sensitization or desensitization in response to terbutaline. Brain Res Dev Brain Res. 2001 Nov 26;131(1-2):113–125. doi: 10.1016/s0165-3806(01)00282-6. [DOI] [PubMed] [Google Scholar]
- Slotkin Theodore A., Auman J. Todd, Seidler Frederic J. Ontogenesis of beta-adrenoceptor signaling: implications for perinatal physiology and for fetal effects of tocolytic drugs. J Pharmacol Exp Ther. 2003 Apr 7;306(1):1–7. doi: 10.1124/jpet.102.048421. [DOI] [PubMed] [Google Scholar]
- Song X., Seidler F. J., Saleh J. L., Zhang J., Padilla S., Slotkin T. A. Cellular mechanisms for developmental toxicity of chlorpyrifos: targeting the adenylyl cyclase signaling cascade. Toxicol Appl Pharmacol. 1997 Jul;145(1):158–174. doi: 10.1006/taap.1997.8171. [DOI] [PubMed] [Google Scholar]
- Stachowiak E. K., Fang X., Myers J., Dunham S., Stachowiak M. K. cAMP-induced differentiation of human neuronal progenitor cells is mediated by nuclear fibroblast growth factor receptor-1 (FGFR1). J Neurochem. 2003 Mar;84(6):1296–1312. doi: 10.1046/j.1471-4159.2003.01624.x. [DOI] [PubMed] [Google Scholar]
- Usmani Khawja A., Rose Randy L., Hodgson Ernest. Inhibition and activation of the human liver microsomal and human cytochrome P450 3A4 metabolism of testosterone by deployment-related chemicals. Drug Metab Dispos. 2003 Apr;31(4):384–391. doi: 10.1124/dmd.31.4.384. [DOI] [PubMed] [Google Scholar]
- Vatner D. E., Asai K., Iwase M., Ishikawa Y., Wagner T. E., Shannon R. P., Homcy C. J., Vatner S. F. Overexpression of myocardial Gsalpha prevents full expression of catecholamine desensitization despite increased beta-adrenergic receptor kinase. J Clin Invest. 1998 May 1;101(9):1916–1922. doi: 10.1172/JCI1530. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vinggaard A. M., Hnida C., Breinholt V., Larsen J. C. Screening of selected pesticides for inhibition of CYP19 aromatase activity in vitro. Toxicol In Vitro. 2000 Jun;14(3):227–234. doi: 10.1016/s0887-2333(00)00018-7. [DOI] [PubMed] [Google Scholar]
- Ward T. R., Mundy W. R. Organophosphorus compounds preferentially affect second messenger systems coupled to M2/M4 receptors in rat frontal cortex. Brain Res Bull. 1996;39(1):49–55. doi: 10.1016/0361-9230(95)02044-6. [DOI] [PubMed] [Google Scholar]
- Watts Val J. Molecular mechanisms for heterologous sensitization of adenylate cyclase. J Pharmacol Exp Ther. 2002 Jul;302(1):1–7. doi: 10.1124/jpet.302.1.1. [DOI] [PubMed] [Google Scholar]
- Whitney K. D., Seidler F. J., Slotkin T. A. Developmental neurotoxicity of chlorpyrifos: cellular mechanisms. Toxicol Appl Pharmacol. 1995 Sep;134(1):53–62. doi: 10.1006/taap.1995.1168. [DOI] [PubMed] [Google Scholar]
- Yanai Joseph, Vatury Ori, Slotkin Theodore A. Cell signaling as a target and underlying mechanism for neurobehavioral teratogenesis. Ann N Y Acad Sci. 2002 Jun;965:473–478. doi: 10.1111/j.1749-6632.2002.tb04188.x. [DOI] [PubMed] [Google Scholar]
- Zeiders J. L., Seidler F. J., Slotkin T. A. Ontogeny of regulatory mechanisms for beta-adrenoceptor control of rat cardiac adenylyl cyclase: targeting of G-proteins and the cyclase catalytic subunit. J Mol Cell Cardiol. 1997 Feb;29(2):603–615. doi: 10.1006/jmcc.1996.0303. [DOI] [PubMed] [Google Scholar]
- Zhang Hengshan, Liu Jing, Pope Carey N. Age-related effects of chlorpyrifos on muscarinic receptor-mediated signaling in rat cortex. Arch Toxicol. 2002 Jan;75(11-12):676–684. doi: 10.1007/s00204-001-0309-3. [DOI] [PubMed] [Google Scholar]
- van Wijk R., Wicks W. D., Bevers M. M., van Rijn J. Rapid arrest of DNA synthesis by N 6 ,O 2' -dibutyryl cyclic adenosine 3',5'-monophosphate in cultured hepatoma cells. Cancer Res. 1973 Jun;33(6):1331–1338. [PubMed] [Google Scholar]