Abstract
Although many studies have demonstrated the efficacy of succimer chelation in reducing blood and brain lead levels, the relative efficacy of the drug in the two tissues is less well understood. This issue is important because blood lead levels after chelation are used clinically to estimate reductions in the brain, the most critical organ in considering lead-induced neurotoxicity. The present study was designed to further investigate this issue, using multiple chelation regimens. Long-Evans rats were exposed to one of three lead exposure regimens from birth until postnatal day 40, followed by treatment with succimer (one or two 3-week regimens) or vehicle. The results indicated that one succimer regimen was significantly superior to vehicle treatment in lowering lead levels in both blood and brain across the entire 8-week follow-up period. Similarly, a second succimer regimen offered significant additional benefit relative to one regimen for both blood and brain across the 4-week follow-up period. However, several findings revealed that succimer-induced reductions in brain lead lagged behind reductions in blood lead and were generally smaller in magnitude. Furthermore, a rebound was detected in blood, but not brain, lead levels after both succimer regimens. Given the results of this study, we urge caution in using blood lead as a surrogate for brain lead levels, particularly during and immediately after chelation treatment when reductions in blood lead levels overestimate reductions in brain lead levels. The present results suggest that, in clinical use, succimer treatment may need to extend beyond the point at which blood lead levels have dropped to an "acceptable" target value in order to effectively reduce brain lead levels and minimize neurotoxicity.
Full Text
The Full Text of this article is available as a PDF (127.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bellinger D. C., Stiles K. M., Needleman H. L. Low-level lead exposure, intelligence and academic achievement: a long-term follow-up study. Pediatrics. 1992 Dec;90(6):855–861. [PubMed] [Google Scholar]
- Bentur Y., Brook J. G., Behar R., Taitelman U. Meso-2,3-dimercaptosuccinic acid in the diagnosis and treatment of lead poisoning. J Toxicol Clin Toxicol. 1987;25(1-2):39–51. doi: 10.3109/15563658708992612. [DOI] [PubMed] [Google Scholar]
- Canfield Richard L., Henderson Charles R., Jr, Cory-Slechta Deborah A., Cox Christopher, Jusko Todd A., Lanphear Bruce P. Intellectual impairment in children with blood lead concentrations below 10 microg per deciliter. N Engl J Med. 2003 Apr 17;348(16):1517–1526. doi: 10.1056/NEJMoa022848. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chisolm J. J., Jr Safety and efficacy of meso-2,3-dimercaptosuccinic acid (DMSA) in children with elevated blood lead concentrations. J Toxicol Clin Toxicol. 2000;38(4):365–375. doi: 10.1081/clt-100100945. [DOI] [PubMed] [Google Scholar]
- Cory-Slechta D. A. Mobilization of lead over the course of DMSA chelation therapy and long-term efficacy. J Pharmacol Exp Ther. 1988 Jul;246(1):84–91. [PubMed] [Google Scholar]
- Cremin J. D., Jr, Luck M. L., Laughlin N. K., Smith D. R. Efficacy of succimer chelation for reducing brain lead in a primate model of human lead exposure. Toxicol Appl Pharmacol. 1999 Dec 15;161(3):283–293. doi: 10.1006/taap.1999.8807. [DOI] [PubMed] [Google Scholar]
- Dietrich K. N., Berger O. G., Succop P. A., Hammond P. B., Bornschein R. L. The developmental consequences of low to moderate prenatal and postnatal lead exposure: intellectual attainment in the Cincinnati Lead Study Cohort following school entry. Neurotoxicol Teratol. 1993 Jan-Feb;15(1):37–44. doi: 10.1016/0892-0362(93)90043-n. [DOI] [PubMed] [Google Scholar]
- Fergusson D. M., Horwood L. J., Lynskey M. T. Early dentine lead levels and subsequent cognitive and behavioural development. J Child Psychol Psychiatry. 1993 Feb;34(2):215–227. doi: 10.1111/j.1469-7610.1993.tb00980.x. [DOI] [PubMed] [Google Scholar]
- Flora S. J., Bhattacharya R., Vijayaraghavan R. Combined therapeutic potential of meso-2,3-dimercaptosuccinic acid and calcium disodium edetate on the mobilization and distribution of lead in experimental lead intoxication in rats. Fundam Appl Toxicol. 1995 May;25(2):233–240. doi: 10.1006/faat.1995.1059. [DOI] [PubMed] [Google Scholar]
- Garavan H., Morgan R. E., Levitsky D. A., Hermer-Vazquez L., Strupp B. J. Enduring effects of early lead exposure: evidence for a specific deficit in associative ability. Neurotoxicol Teratol. 2000 Mar-Apr;22(2):151–164. doi: 10.1016/s0892-0362(99)00057-4. [DOI] [PubMed] [Google Scholar]
- Graziano J. H., Lolacono N. J., Meyer P. Dose-response study of oral 2,3-dimercaptosuccinic acid in children with elevated blood lead concentrations. J Pediatr. 1988 Oct;113(4):751–757. doi: 10.1016/s0022-3476(88)80396-2. [DOI] [PubMed] [Google Scholar]
- Graziano J. H., Lolacono N. J., Moulton T., Mitchell M. E., Slavkovich V., Zarate C. Controlled study of meso-2,3-dimercaptosuccinic acid for the management of childhood lead intoxication. J Pediatr. 1992 Jan;120(1):133–139. doi: 10.1016/s0022-3476(05)80618-3. [DOI] [PubMed] [Google Scholar]
- Graziano J. H. Role of 2,3-dimercaptosuccinic acid in the treatment of heavy metal poisoning. Med Toxicol. 1986 May-Jun;1(3):155–162. doi: 10.1007/BF03259834. [DOI] [PubMed] [Google Scholar]
- Graziano J. H., Siris E. S., LoIacono N., Silverberg S. J., Turgeon L. 2,3-Dimercaptosuccinic acid as an antidote for lead intoxication. Clin Pharmacol Ther. 1985 Apr;37(4):431–438. doi: 10.1038/clpt.1985.67. [DOI] [PubMed] [Google Scholar]
- Kostial K., Blanusa M., Piasek M., Restek-Samarzija N., Jones M. M., Singh P. K. Combined chelation therapy in reducing tissue lead concentrations in suckling rats. J Appl Toxicol. 1999 May-Jun;19(3):143–147. doi: 10.1002/(sici)1099-1263(199905/06)19:3<143::aid-jat562>3.0.co;2-g. [DOI] [PubMed] [Google Scholar]
- Levin E. D., Bowman R. E. Long-term lead effects on the Hamilton Search Task and delayed alternation in monkeys. Neurobehav Toxicol Teratol. 1986 May-Jun;8(3):219–224. [PubMed] [Google Scholar]
- Liebelt E. L., Shannon M., Graef J. W. Efficacy of oral meso-2,3-dimercaptosuccinic acid therapy for low-level childhood plumbism. J Pediatr. 1994 Feb;124(2):313–317. doi: 10.1016/s0022-3476(94)70326-4. [DOI] [PubMed] [Google Scholar]
- Liu Xianchen, Dietrich Kim N., Radcliffe Jerilynn, Ragan N. Beth, Rhoads George G., Rogan Walter J. Do children with falling blood lead levels have improved cognition? Pediatrics. 2002 Oct;110(4):787–791. doi: 10.1542/peds.110.4.787. [DOI] [PubMed] [Google Scholar]
- Morgan R. E., Garavan H., Smith E. G., Driscoll L. L., Levitsky D. A., Strupp B. J. Early lead exposure produces lasting changes in sustained attention, response initiation, and reactivity to errors. Neurotoxicol Teratol. 2001 Nov-Dec;23(6):519–531. doi: 10.1016/s0892-0362(01)00171-4. [DOI] [PubMed] [Google Scholar]
- Needleman H. L., Schell A., Bellinger D., Leviton A., Allred E. N. The long-term effects of exposure to low doses of lead in childhood. An 11-year follow-up report. N Engl J Med. 1990 Jan 11;322(2):83–88. doi: 10.1056/NEJM199001113220203. [DOI] [PubMed] [Google Scholar]
- O'Connor M. E., Rich D. Children with moderately elevated lead levels: is chelation with DMSA helpful? Clin Pediatr (Phila) 1999 Jun;38(6):325–331. doi: 10.1177/000992289903800602. [DOI] [PubMed] [Google Scholar]
- Rice D. C. Behavioral effects of lead in monkeys tested during infancy and adulthood. Neurotoxicol Teratol. 1992 Jul-Aug;14(4):235–245. doi: 10.1016/0892-0362(92)90002-r. [DOI] [PubMed] [Google Scholar]
- Roberts J. R., Reigart J. R., Ebeling M., Hulsey T. C. Time required for blood lead levels to decline in nonchelated children. J Toxicol Clin Toxicol. 2001;39(2):153–160. doi: 10.1081/clt-100103831. [DOI] [PubMed] [Google Scholar]
- Rogan W. J., Dietrich K. N., Ware J. H., Dockery D. W., Salganik M., Radcliffe J., Jones R. L., Ragan N. B., Chisolm J. J., Jr, Rhoads G. G. The effect of chelation therapy with succimer on neuropsychological development in children exposed to lead. N Engl J Med. 2001 May 10;344(19):1421–1426. doi: 10.1056/NEJM200105103441902. [DOI] [PubMed] [Google Scholar]
- Ruff H. A., Bijur P. E., Markowitz M., Ma Y. C., Rosen J. F. Declining blood lead levels and cognitive changes in moderately lead-poisoned children. JAMA. 1993 Apr 7;269(13):1641–1646. [PubMed] [Google Scholar]
- Seaton C. L., Lasman J., Smith D. R. The effects of CaNa(2)EDTA on brain lead mobilization in rodents determined using a stable lead isotope tracer. Toxicol Appl Pharmacol. 1999 Sep 15;159(3):153–160. doi: 10.1006/taap.1999.8725. [DOI] [PubMed] [Google Scholar]
- Smith D. R., Calacsan C., Woolard D., Luck M., Cremin J., Laughlin N. K. Succimer and the urinary excretion of essential elements in a primate model of childhood lead exposure. Toxicol Sci. 2000 Apr;54(2):473–480. doi: 10.1093/toxsci/54.2.473. [DOI] [PubMed] [Google Scholar]
- Smith D. R., Woolard D., Luck M. L., Laughlin N. K. Succimer and the reduction of tissue lead in juvenile monkeys. Toxicol Appl Pharmacol. 2000 Aug 1;166(3):230–240. doi: 10.1006/taap.2000.8973. [DOI] [PubMed] [Google Scholar]
- Smith D., Bayer L., Strupp B. J. Efficacy of succimer chelation for reducing brain Pb levels in a rodent model. Environ Res. 1998 Aug;78(2):168–176. doi: 10.1006/enrs.1998.3854. [DOI] [PubMed] [Google Scholar]
- Thomas D. J., Chisolm J., Jr Lead, zinc and copper decorporation during calcium disodium ethylenediamine tetraacetate treatment of lead-poisoned children. J Pharmacol Exp Ther. 1986 Dec;239(3):829–835. [PubMed] [Google Scholar]
- Tong S., Baghurst P. A., Sawyer M. G., Burns J., McMichael A. J. Declining blood lead levels and changes in cognitive function during childhood: the Port Pirie Cohort Study. JAMA. 1998 Dec 9;280(22):1915–1919. doi: 10.1001/jama.280.22.1915. [DOI] [PubMed] [Google Scholar]
- Wilson M. A., Johnston M. V., Goldstein G. W., Blue M. E. Neonatal lead exposure impairs development of rodent barrel field cortex. Proc Natl Acad Sci U S A. 2000 May 9;97(10):5540–5545. doi: 10.1073/pnas.97.10.5540. [DOI] [PMC free article] [PubMed] [Google Scholar]