Abstract
Exposure to di-(2-ethylhexyl) phthalate (DEHP) is prevalent based on the measurement of its hydrolytic metabolite mono-(2-ethylhexyl) phthalate (MEHP) in the urine of 78% of the general U.S. population studied in the 1999-2000 National Health and Nutrition Examination Survey (NHANES). However, despite the high level of production and use of DEHP, the urinary MEHP levels in the NHANES samples were lower than the monoester metabolites of phthalates less commonly used than DEHP, suggesting metabolic differences between phthalates. We measured MEHP and two oxidative DEHP metabolites, mono-(2-ethyl-5-oxohexyl) phthalate (MEOHP) and mono (2-ethyl-5-hydroxyhexyl) phthalate (MEHHP) to verify whether these other metabolites account for a greater proportion of DEHP metabolic products in 127 paired human urine and serum samples. We found that the urinary levels of MEHHP and MEOHP were 10-fold higher than levels of MEHP; concentrations of urinary MEOHP and MEHHP were strongly correlated (r = 0.928). We also found that the serum levels of MEOHP and MEHHP were comparatively lower than those in urine. Furthermore, the glucuronide-bound conjugates of the oxidative metabolites were the predominant form in both urine and serum. MEOHP and MEHHP cannot be formed by serum enzymes from the hydrolysis of any contamination from DEHP potentially introduced during blood collection and storage. Therefore, concentrations of MEHHP and MEOHP in serum may be a more selective measure of DEHP exposure than is MEHP. However, additional data on the absorption, distribution, metabolism, and elimination of these oxidative metabolites are needed to completely understand the extent of DEHP exposure from the serum concentrations of oxidative DEHP metabolites.
Full Text
The Full Text of this article is available as a PDF (138.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Albro P. W., Jordan S., Corbett J. T., Schroeder J. L. Determination of total phthalate in urine by gas chromatography. Anal Chem. 1984 Feb;56(2):247–250. doi: 10.1021/ac00266a029. [DOI] [PubMed] [Google Scholar]
- Albro P. W., Moore B. Identification of the metabolites of simple phthalate diesters in rat urine. J Chromatogr. 1974 Jul 17;94(0):209–218. doi: 10.1016/s0021-9673(01)92368-4. [DOI] [PubMed] [Google Scholar]
- Albro P. W., Thomas R., Fishbein L. Metabolism of diethylhexyl phthalate by rats. Isolation and characterization of the urinary metabolites. J Chromatogr. 1973 Feb 28;76(2):321–330. doi: 10.1016/s0021-9673(01)96915-8. [DOI] [PubMed] [Google Scholar]
- Barr D. B., Barr J. R., Driskell W. J., Hill R. H., Jr, Ashley D. L., Needham L. L., Head S. L., Sampson E. J. Strategies for biological monitoring of exposure for contemporary-use pesticides. Toxicol Ind Health. 1999 Jan-Mar;15(1-2):168–179. doi: 10.1191/074823399678846556. [DOI] [PubMed] [Google Scholar]
- Barr Dana B., Barr John R., Maggio Vincent L., Whitehead Ralph D., Jr, Sadowski Melissa A., Whyatt Robin M., Needham Larry L. A multi-analyte method for the quantification of contemporary pesticides in human serum and plasma using high-resolution mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2002 Oct 5;778(1-2):99–111. doi: 10.1016/s0378-4347(01)00444-3. [DOI] [PubMed] [Google Scholar]
- Barr Dana B., Silva Manori J., Kato Kayoko, Reidy John A., Malek Nicole A., Hurtz Donald, Sadowski Melissa, Needham Larry L., Calafat Antonia M. Assessing human exposure to phthalates using monoesters and their oxidized metabolites as biomarkers. Environ Health Perspect. 2003 Jul;111(9):1148–1151. doi: 10.1289/ehp.6074. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blount B. C., Milgram K. E., Silva M. J., Malek N. A., Reidy J. A., Needham L. L., Brock J. W. Quantitative detection of eight phthalate metabolites in human urine using HPLC-APCI-MS/MS. Anal Chem. 2000 Sep 1;72(17):4127–4134. doi: 10.1021/ac000422r. [DOI] [PubMed] [Google Scholar]
- Blount B. C., Silva M. J., Caudill S. P., Needham L. L., Pirkle J. L., Sampson E. J., Lucier G. W., Jackson R. J., Brock J. W. Levels of seven urinary phthalate metabolites in a human reference population. Environ Health Perspect. 2000 Oct;108(10):979–982. doi: 10.1289/ehp.00108979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brock J. W., Caudill S. P., Silva M. J., Needham L. L., Hilborn E. D. Phthalate monoesters levels in the urine of young children. Bull Environ Contam Toxicol. 2002 Mar;68(3):309–314. doi: 10.1007/s001280255. [DOI] [PubMed] [Google Scholar]
- Faouzi M. A., Dine T., Gressier B., Kambia K., Luyckx M., Pagniez D., Brunet C., Cazin M., Belabed A., Cazin J. C. Exposure of hemodialysis patients to di-2-ethylhexyl phthalate. Int J Pharm. 1999 Mar 25;180(1):113–121. doi: 10.1016/s0378-5173(98)00411-6. [DOI] [PubMed] [Google Scholar]
- Hinton R. H., Mitchell F. E., Mann A., Chescoe D., Price S. C., Nunn A., Grasso P., Bridges J. W. Effects of phthalic acid esters on the liver and thyroid. Environ Health Perspect. 1986 Dec;70:195–210. doi: 10.1289/ehp.8670195. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kato Kayoko, Silva Manori J., Brock John W., Reidy John A., Malek Nicole A., Hodge Carolyn C., Nakazawa Hiroyuki, Needham Larry L., Barr Dana B. Quantitative detection of nine phthalate metabolites in human serum using reversed-phase high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry. J Anal Toxicol. 2003 Jul-Aug;27(5):284–289. doi: 10.1093/jat/27.5.284. [DOI] [PubMed] [Google Scholar]
- Kavlock Robert, Boekelheide Kim, Chapin Robert, Cunningham Michael, Faustman Elaine, Foster Paul, Golub Mari, Henderson Rogene, Hinberg Irwin, Little Ruth. NTP Center for the Evaluation of Risks to Human Reproduction: phthalates expert panel report on the reproductive and developmental toxicity of di(2-ethylhexyl) phthalate. Reprod Toxicol. 2002 Sep-Oct;16(5):529–653. doi: 10.1016/s0890-6238(02)00032-1. [DOI] [PubMed] [Google Scholar]
- Kluwe W. M., McConnell E. E., Huff J. E., Haseman J. K., Douglas J. F., Hartwell W. V. Carcinogenicity testing of phthalate esters and related compounds by the National Toxicology Program and the National Cancer Institute. Environ Health Perspect. 1982 Nov;45:129–133. doi: 10.1289/ehp.8245129. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Luster M. I., Albro P. W., Chae K., Clark G., McKinney J. D. Radioimmunoassay for mono-(2-ethylhexyl) phthalate in unextracted plasma. Clin Chem. 1978 Mar;24(3):429–432. [PubMed] [Google Scholar]
- Ono K., Tatsukawa R., Wakimoto T. Migration of plasticizer from hemodialysis blood tubing. Preliminary report. JAMA. 1975 Dec 1;234(9):948–949. [PubMed] [Google Scholar]
- Peck C. C., Odom D. G., Friedman H. I., Albro P. W., Hass J. R., Brady J. T., Jess D. A. Di-2-ethylhexyl phthalate (DEHP) and mono-2-ethylhexyl phthalate (MEHP) accumulation in whole blood and red cell concentrates. Transfusion. 1979 Mar-Apr;19(2):137–146. doi: 10.1046/j.1537-2995.1979.19279160282.x. [DOI] [PubMed] [Google Scholar]
- Sharman M., Read W. A., Castle L., Gilbert J. Levels of di-(2-ethylhexyl)phthalate and total phthalate esters in milk, cream, butter and cheese. Food Addit Contam. 1994 May-Jun;11(3):375–385. doi: 10.1080/02652039409374236. [DOI] [PubMed] [Google Scholar]
- Silva Manori J., Barr Dana B., Reidy John A., Kato Kayoko, Malek Nicole A., Hodge Carolyn C., Hurtz Donald, 3rd, Calafat Antonia M., Needham Larry L., Brock John W. Glucuronidation patterns of common urinary and serum monoester phthalate metabolites. Arch Toxicol. 2003 Jun 28;77(10):561–567. doi: 10.1007/s00204-003-0486-3. [DOI] [PubMed] [Google Scholar]
- Silva Manori J., Malek Nicole A., Hodge Carolyn C., Reidy John A., Kato Kayoko, Barr Dana B., Needham Larry L., Brock John W. Improved quantitative detection of 11 urinary phthalate metabolites in humans using liquid chromatography-atmospheric pressure chemical ionization tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2003 Jun 15;789(2):393–404. doi: 10.1016/s1570-0232(03)00164-8. [DOI] [PubMed] [Google Scholar]
- White R. D., Carter D. E., Earnest D., Mueller J. Absorption and metabolism of three phthalate diesters by the rat small intestine. Food Cosmet Toxicol. 1980 Aug;18(4):383–386. doi: 10.1016/0015-6264(80)90194-7. [DOI] [PubMed] [Google Scholar]
- Williams D. T., Blanchfield B. J. Retention, excretion and metabolism of di-(2-ethylhexyl) phthalate administered orally to the rat. Bull Environ Contam Toxicol. 1974 Apr;11(4):371–378. doi: 10.1007/BF01684945. [DOI] [PubMed] [Google Scholar]
- Wolf C., Jr, Lambright C., Mann P., Price M., Cooper R. L., Ostby J., Gray L. E., Jr Administration of potentially antiandrogenic pesticides (procymidone, linuron, iprodione, chlozolinate, p,p'-DDE, and ketoconazole) and toxic substances (dibutyl- and diethylhexyl phthalate, PCB 169, and ethane dimethane sulphonate) during sexual differentiation produces diverse profiles of reproductive malformations in the male rat. Toxicol Ind Health. 1999 Jan-Mar;15(1-2):94–118. doi: 10.1177/074823379901500109. [DOI] [PubMed] [Google Scholar]