Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2004 Mar;112(3):359–362. doi: 10.1289/ehp.6524

Abnormal bone composition in female juvenile American alligators from a pesticide-polluted lake (Lake Apopka, Florida).

P Monica Lind 1, Matthew R Milnes 1, Rebecca Lundberg 1, Dieldrich Bermudez 1, Jan A Orberg 1, Louis J Guillette Jr 1
PMCID: PMC1241867  PMID: 14998753

Abstract

Reproductive disorders have been found in pesticide-exposed alligators living in Lake Apopka, Florida (USA). These disorders have been hypothesized to be caused by exposure to endocrine- disruptive estrogen-like contaminants. The aim of this study was to expand our analysis beyond previous studies by investigating whether bone tissue, known to be affected by sex steroid hormones, is a potential target of endocrine disruptors. Long bones from 16 juvenile female alligators from Lake Apopka (pesticide-contaminated lake) and Lake Woodruff (control lake) were evaluated by peripheral quantitative computed tomography. We observed significant differences in bone composition, with female alligators from the contaminated lake having greater trabecular bone mineral density (BMD), total BMD, and trabecular mineral content compared with females from the control lake (p < 0.05). Increased trabecular and total BMD measurements suggest that juvenile female alligators from Lake Apopka were exposed to contaminants that created an internal environment more estrogenic than that normally observed. This estrogenic environment could be caused by both natural and anthropogenic compounds. Effects on BMD indicate interference with bone homeostasis. We hypothesize that contaminants present in the lake inhibit the natural and continuous resorption of bone tissue, resulting in increased bone mass. Although this is the only study performed to date examining effects of environmental estrogenic compounds on alligator bones, it supports previous laboratory-based studies in rodents. Further, this study is important in demonstrating that the alterations in morphology and physiology induced in free-ranging individuals living in environments contaminated with endocrine-active compounds are not limited to a few systems or tissues; rather, effects can be observed in many tissues affected by these hormones.

Full Text

The Full Text of this article is available as a PDF (385.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aulerich R. J., Yamini B., Bursian S. J. Dietary exposure to 3,3',4,4',5-pentachlorobiphenyl (PCB 126) or 2,3,7,8-tetrachlorodibenzo-p-dixon (TCDD) does not induce proliferation of squamous epithelium or osteolysis in the jaws of weanling rats. Vet Hum Toxicol. 2001 Jun;43(3):170–171. [PubMed] [Google Scholar]
  2. Bord S., Beavan S., Ireland D., Horner A., Compston J. E. Mechanisms by which high-dose estrogen therapy produces anabolic skeletal effects in postmenopausal women: role of locally produced growth factors. Bone. 2001 Sep;29(3):216–222. doi: 10.1016/s8756-3282(01)00501-4. [DOI] [PubMed] [Google Scholar]
  3. Breen S. A., Loveday B. E., Millest A. J., Waterton J. C. Stimulation and inhibition of bone formation: use of peripheral quantitative computed tomography in the mouse in vivo. Lab Anim. 1998 Oct;32(4):467–476. doi: 10.1258/002367798780599839. [DOI] [PubMed] [Google Scholar]
  4. Bryant H. U., Glasebrook A. L., Yang N. N., Sato M. An estrogen receptor basis for raloxifene action in bone. J Steroid Biochem Mol Biol. 1999 Apr-Jun;69(1-6):37–44. doi: 10.1016/s0960-0760(98)00147-2. [DOI] [PubMed] [Google Scholar]
  5. Davis V. L., Couse J. F., Gray T. K., Korach K. S. Correlation between low levels of estrogen receptors and estrogen responsiveness in two rat osteoblast-like cell lines. J Bone Miner Res. 1994 Jul;9(7):983–991. doi: 10.1002/jbmr.5650090705. [DOI] [PubMed] [Google Scholar]
  6. Elsey R. M., Wink C. S. The effects of estradiol on plasma calcium and femoral bone structure in alligators (Alligator mississippiensis). Comp Biochem Physiol A Comp Physiol. 1986;84(1):107–110. doi: 10.1016/0300-9629(86)90050-2. [DOI] [PubMed] [Google Scholar]
  7. Gierthy J. F., Silkworth J. B., Tassinari M., Stein G. S., Lian J. B. 2,3,7,8-Tetrachlorodibenzo-p-dioxin inhibits differentiation of normal diploid rat osteoblasts in vitro. J Cell Biochem. 1994 Feb;54(2):231–238. doi: 10.1002/jcb.240540211. [DOI] [PubMed] [Google Scholar]
  8. Guillette L. J., Jr, Brock J. W., Rooney A. A., Woodward A. R. Serum concentrations of various environmental contaminants and their relationship to sex steroid concentrations and phallus size in juvenile American alligators. Arch Environ Contam Toxicol. 1999 May;36(4):447–455. doi: 10.1007/pl00006617. [DOI] [PubMed] [Google Scholar]
  9. Guillette L. J., Jr, Woodward A. R., Crain D. A., Pickford D. B., Rooney A. A., Percival H. F. Plasma steroid concentrations and male phallus size in juvenile alligators from seven Florida lakes. Gen Comp Endocrinol. 1999 Dec;116(3):356–372. doi: 10.1006/gcen.1999.7375. [DOI] [PubMed] [Google Scholar]
  10. Guillette Louis J., Jr, Vonier Peter M., McLachlan John A. Affinity of the alligator estrogen receptor for serum pesticide contaminants. Toxicology. 2002 Dec 27;181-182:151–154. doi: 10.1016/s0300-483x(02)00272-x. [DOI] [PubMed] [Google Scholar]
  11. Hewitt Elizabeth A., Crain D. Andrew, Gunderson Mark P., Guillette Louis J., Jr Thyroid status in juvenile alligators (Alligator mississippiensis) from contaminated and reference sites on Lake Okeechobee, Florida, USA. Chemosphere. 2002 Jun;47(10):1129–1135. doi: 10.1016/s0045-6535(02)00090-5. [DOI] [PubMed] [Google Scholar]
  12. Iguchi T., Watanabe H., Katsu Y. Developmental effects of estrogenic agents on mice, fish, and frogs: a mini-review. Horm Behav. 2001 Sep;40(2):248–251. doi: 10.1006/hbeh.2001.1675. [DOI] [PubMed] [Google Scholar]
  13. Jämsä T., Viluksela M., Tuomisto J. T., Tuomisto J., Tuukkanen J. Effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin on bone in two rat strains with different aryl hydrocarbon receptor structures. J Bone Miner Res. 2001 Oct;16(10):1812–1820. doi: 10.1359/jbmr.2001.16.10.1812. [DOI] [PubMed] [Google Scholar]
  14. Kameda T., Mano H., Yuasa T., Mori Y., Miyazawa K., Shiokawa M., Nakamaru Y., Hiroi E., Hiura K., Kameda A. Estrogen inhibits bone resorption by directly inducing apoptosis of the bone-resorbing osteoclasts. J Exp Med. 1997 Aug 18;186(4):489–495. doi: 10.1084/jem.186.4.489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Khosla S., Melton L. J., 3rd, Atkinson E. J., O'Fallon W. M., Klee G. G., Riggs B. L. Relationship of serum sex steroid levels and bone turnover markers with bone mineral density in men and women: a key role for bioavailable estrogen. J Clin Endocrinol Metab. 1998 Jul;83(7):2266–2274. doi: 10.1210/jcem.83.7.4924. [DOI] [PubMed] [Google Scholar]
  16. Kiel D. P., Felson D. T., Anderson J. J., Wilson P. W., Moskowitz M. A. Hip fracture and the use of estrogens in postmenopausal women. The Framingham Study. N Engl J Med. 1987 Nov 5;317(19):1169–1174. doi: 10.1056/NEJM198711053171901. [DOI] [PubMed] [Google Scholar]
  17. Lind P. M., Eriksen E. F., Sahlin L., Edlund M., Orberg J. Effects of the antiestrogenic environmental pollutant 3,3',4,4', 5-pentachlorobiphenyl (PCB #126) in rat bone and uterus: diverging effects in ovariectomized and intact animals. Toxicol Appl Pharmacol. 1999 Feb 1;154(3):236–244. doi: 10.1006/taap.1998.8568. [DOI] [PubMed] [Google Scholar]
  18. Lind P. M., Larsson S., Johansson S., Melhus H., Wikström M., Lindhe O., Orberg J. Bone tissue composition, dimensions and strength in female rats given an increased dietary level of vitamin A or exposed to 3,3',4, 4',5-pentachlorobiphenyl (PCB126) alone or in combination with vitamin C. Toxicology. 2000 Oct 26;151(1-3):11–23. doi: 10.1016/s0300-483x(00)00262-6. [DOI] [PubMed] [Google Scholar]
  19. McLachlan J. A. Environmental signaling: what embryos and evolution teach us about endocrine disrupting chemicals. Endocr Rev. 2001 Jun;22(3):319–341. doi: 10.1210/edrv.22.3.0432. [DOI] [PubMed] [Google Scholar]
  20. Migliaccio S., Newbold R. R., Bullock B. C., Jefferson W. J., Sutton F. G., Jr, McLachlan J. A., Korach K. S. Alterations of maternal estrogen levels during gestation affect the skeleton of female offspring. Endocrinology. 1996 May;137(5):2118–2125. doi: 10.1210/endo.137.5.8612556. [DOI] [PubMed] [Google Scholar]
  21. Milnes Matthew R., Jr, Roberts Robert N., Guillette Louis J., Jr Effects of incubation temperature and estrogen exposure on aromatase activity in the brain and gonads of embryonic alligators. Environ Health Perspect. 2002 Jun;110 (Suppl 3):393–396. doi: 10.1289/ehp.02110s3393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Oursler M. J., Osdoby P., Pyfferoen J., Riggs B. L., Spelsberg T. C. Avian osteoclasts as estrogen target cells. Proc Natl Acad Sci U S A. 1991 Aug 1;88(15):6613–6617. doi: 10.1073/pnas.88.15.6613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Podreka S., Georges A., Maher B., Limpus C. J. The environmental contaminant DDE fails to influence the outcome of sexual differentiation in the marine turtle Chelonia mydas. Environ Health Perspect. 1998 Apr;106(4):185–188. doi: 10.1289/ehp.98106185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Rooney Andrew A., Bermudez Dieldrich S., Guillette Louis J., Jr Altered histology of the thymus and spleen in contaminant-exposed juvenile American alligators. J Morphol. 2003 Jun;256(3):349–359. doi: 10.1002/jmor.10090. [DOI] [PubMed] [Google Scholar]
  25. Vonier P. M., Crain D. A., McLachlan J. A., Guillette L. J., Jr, Arnold S. F. Interaction of environmental chemicals with the estrogen and progesterone receptors from the oviduct of the American alligator. Environ Health Perspect. 1996 Dec;104(12):1318–1322. doi: 10.1289/ehp.961041318. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Willingham E., Crews D. Sex reversal effects of environmentally relevant xenobiotic concentrations on the red-eared slider turtle, a species with temperature-dependent sex determination. Gen Comp Endocrinol. 1999 Mar;113(3):429–435. doi: 10.1006/gcen.1998.7221. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES