Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2004 Mar;112(4):420–422. doi: 10.1289/ehp.6709

The utility of DNA microarrays for characterizing genotoxicity.

Ronald K Newton 1, Marilyn Aardema 1, Jiri Aubrecht 1
PMCID: PMC1241894  PMID: 15033590

Abstract

Microarrays provide an unprecedented opportunity for comprehensive concurrent analysis of thousands of genes. The global analysis of the response of genes to a toxic insult (toxicogenomics), as opposed to the historical method of examining a few select genes, provides a more complete picture of toxicologically significant events. Here we examine the utility of microarrays for providing mechanistic insights into the response of cells to DNA damage. Our data indicate that the value of the technology is in its potential to provide mechanistic insight into the mode of action of a genotoxic compound. Array-based expression profiling may be useful for differentiating compounds that interact directly with DNA from those compounds that are genotoxic via a secondary mechanism. As such, genomic microarrays may serve as a valuable alternative methodology that helps discriminate between these two classes of compounds. Key words: biomarkers, gene expression profile, genetic toxicology, mechanism of action, toxicogenomics.

Full Text

The Full Text of this article is available as a PDF (116.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aardema Marilyn J., MacGregor James T. Toxicology and genetic toxicology in the new era of "toxicogenomics": impact of "-omics" technologies. Mutat Res. 2002 Jan 29;499(1):13–25. doi: 10.1016/s0027-5107(01)00292-5. [DOI] [PubMed] [Google Scholar]
  2. Amundson S. A., Bittner M., Chen Y., Trent J., Meltzer P., Fornace A. J., Jr Fluorescent cDNA microarray hybridization reveals complexity and heterogeneity of cellular genotoxic stress responses. Oncogene. 1999 Jun 17;18(24):3666–3672. doi: 10.1038/sj.onc.1202676. [DOI] [PubMed] [Google Scholar]
  3. Aubrecht J., Narla R. K., Ghosh P., Stanek J., Uckun F. M. Molecular genotoxicity profiles of apoptosis-inducing vanadocene complexes. Toxicol Appl Pharmacol. 1999 Feb 1;154(3):228–235. doi: 10.1006/taap.1998.8592. [DOI] [PubMed] [Google Scholar]
  4. Ben-Israel O., Ben-Israel H., Ulitzur S. Identification and quantification of toxic chemicals by use of Escherichia coli carrying lux genes fused to stress promoters. Appl Environ Microbiol. 1998 Nov;64(11):4346–4352. doi: 10.1128/aem.64.11.4346-4352.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fornace A. J., Jr, Amundson S. A., Bittner M., Myers T. G., Meltzer P., Weinsten J. N., Trent J. The complexity of radiation stress responses: analysis by informatics and functional genomics approaches. Gene Expr. 1999;7(4-6):387–400. [PMC free article] [PubMed] [Google Scholar]
  6. Hamadeh Hisham K., Bushel Pierre R., Jayadev Supriya, DiSorbo Olimpia, Bennett Lee, Li Leping, Tennant Raymond, Stoll Raymond, Barrett J. Carl, Paules Richard S. Prediction of compound signature using high density gene expression profiling. Toxicol Sci. 2002 Jun;67(2):232–240. doi: 10.1093/toxsci/67.2.232. [DOI] [PubMed] [Google Scholar]
  7. Hamadeh Hisham K., Bushel Pierre R., Jayadev Supriya, Martin Karla, DiSorbo Olimpia, Sieber Stella, Bennett Lee, Tennant Raymond, Stoll Raymond, Barrett J. Carl. Gene expression analysis reveals chemical-specific profiles. Toxicol Sci. 2002 Jun;67(2):219–231. doi: 10.1093/toxsci/67.2.219. [DOI] [PubMed] [Google Scholar]
  8. Jelinsky S. A., Estep P., Church G. M., Samson L. D. Regulatory networks revealed by transcriptional profiling of damaged Saccharomyces cerevisiae cells: Rpn4 links base excision repair with proteasomes. Mol Cell Biol. 2000 Nov;20(21):8157–8167. doi: 10.1128/mcb.20.21.8157-8167.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Jelinsky S. A., Samson L. D. Global response of Saccharomyces cerevisiae to an alkylating agent. Proc Natl Acad Sci U S A. 1999 Feb 16;96(4):1486–1491. doi: 10.1073/pnas.96.4.1486. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. MacGregor J. T., Farr S., Tucker J. D., Heddle J. A., Tice R. R., Turteltaub K. W. New molecular endpoints and methods for routine toxicity testing. Fundam Appl Toxicol. 1995 Jul;26(2):156–173. doi: 10.1006/faat.1995.1087. [DOI] [PubMed] [Google Scholar]
  11. Nunoshiba T., Nishioka H. 'Rec-lac test' for detecting SOS-inducing activity of environmental genotoxic substance. Mutat Res. 1991 Jan;254(1):71–77. doi: 10.1016/0921-8777(91)90042-n. [DOI] [PubMed] [Google Scholar]
  12. Oda Y., Nakamura S., Oki I., Kato T., Shinagawa H. Evaluation of the new system (umu-test) for the detection of environmental mutagens and carcinogens. Mutat Res. 1985 Oct;147(5):219–229. doi: 10.1016/0165-1161(85)90062-7. [DOI] [PubMed] [Google Scholar]
  13. Pennie William, Pettit Syril D., Lord Peter G. Toxicogenomics in risk assessment: an overview of an HESI collaborative research program. Environ Health Perspect. 2004 Mar;112(4):417–419. doi: 10.1289/ehp.6674. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ptitsyn L. R., Horneck G., Komova O., Kozubek S., Krasavin E. A., Bonev M., Rettberg P. A biosensor for environmental genotoxin screening based on an SOS lux assay in recombinant Escherichia coli cells. Appl Environ Microbiol. 1997 Nov;63(11):4377–4384. doi: 10.1128/aem.63.11.4377-4384.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Quillardet P., Huisman O., D'Ari R., Hofnung M. The SOS chromotest: direct assay of the expression of gene sfiA as a measure of genotoxicity of chemicals. Biochimie. 1982 Aug-Sep;64(8-9):797–801. doi: 10.1016/s0300-9084(82)80131-4. [DOI] [PubMed] [Google Scholar]
  16. Seidel Shawn D., Kan H. Lynn, Stott William T., Schisler Melissa R., Gollapudi B. Bhaskar. Identification of transcriptome profiles for the DNA-damaging agents bleomycin and hydrogen peroxide in L5178Y mouse lymphoma cells. Environ Mol Mutagen. 2003;42(1):19–25. doi: 10.1002/em.10169. [DOI] [PubMed] [Google Scholar]
  17. Todd M. D., Lee M. J., Williams J. L., Nalezny J. M., Gee P., Benjamin M. B., Farr S. B. The CAT-Tox (L) assay: a sensitive and specific measure of stress-induced transcription in transformed human liver cells. Fundam Appl Toxicol. 1995 Nov;28(1):118–128. doi: 10.1006/faat.1995.1153. [DOI] [PubMed] [Google Scholar]
  18. Vincent R., Goegan P., Johnson G., Brook J. R., Kumarathasan P., Bouthillier L., Burnett R. T. Regulation of promoter-CAT stress genes in HepG2 cells by suspensions of particles from ambient air. Fundam Appl Toxicol. 1997 Sep;39(1):18–32. doi: 10.1006/faat.1997.2336. [DOI] [PubMed] [Google Scholar]
  19. Waring J. F., Ciurlionis R., Jolly R. A., Heindel M., Ulrich R. G. Microarray analysis of hepatotoxins in vitro reveals a correlation between gene expression profiles and mechanisms of toxicity. Toxicol Lett. 2001 Mar 31;120(1-3):359–368. doi: 10.1016/s0378-4274(01)00267-3. [DOI] [PubMed] [Google Scholar]
  20. Waring J. F., Jolly R. A., Ciurlionis R., Lum P. Y., Praestgaard J. T., Morfitt D. C., Buratto B., Roberts C., Schadt E., Ulrich R. G. Clustering of hepatotoxins based on mechanism of toxicity using gene expression profiles. Toxicol Appl Pharmacol. 2001 Aug 15;175(1):28–42. doi: 10.1006/taap.2001.9243. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES