Abstract
DNA microarrays and related tools offer promise for identification of pathways involved in toxic responses to xenobiotics. To be useful for risk assessment, experimental data must be challenged for reliability and interlaboratory reproducibility. Toward this goal, the Hepatotoxicity Working Group of the International Life Sciences Institute (ILSI) Health and Environmental Sciences Institute (HESI) Technical Committee on Application of Genomics to Mechanism-Based Risk Assessment evaluated and compared biological and gene expression responses in rats exposed to two model hepatotoxins--clofibrate and methapyrilene. This collaborative effort provided an unprecedented opportunity for the working group to evaluate and compare multiple biological, genomic, and toxicological parameters across different laboratories and microarray platforms. Many of the results from this collaboration are presented in accompanying articles in this mini-monograph, whereas others have been published previously. (Italic)In vivo(/Italic) studies for both compounds were conducted in two laboratories using a standard experimental protocol, and RNA samples were distributed to 16 laboratories for analysis on six microarray platforms. Histopathology, clinical chemistry, and organ weight changes were consistent with reported effects. Gene expression results demonstrated reasonable agreement between laboratories and across platforms. Discrepancies in expression profiles of some individual genes were largely due to platform differences and approaches to data analysis rather than to biological or interlaboratory variability. Despite these discrepancies there was overall agreement in the biological pathways affected by these compounds, demonstrating that transcriptional profiling is reproducible between laboratories and can reliably identify affected pathways necessary to provide mechanistic insight. This effort represents an important first step toward the use of transcriptional profiling in risk assessment.
Full Text
The Full Text of this article is available as a PDF (141.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Amacher D. E., Beck R., Schomaker S. J., Kenny C. V. Hepatic microsomal enzyme induction, beta-oxidation, and cell proliferation following administration of clofibrate, gemfibrozil, or bezafibrate in the CD rat. Toxicol Appl Pharmacol. 1997 Jan;142(1):143–150. doi: 10.1006/taap.1996.8007. [DOI] [PubMed] [Google Scholar]
- Baker Valerie A., Harries Helen M., Waring Jeff F., Duggan Colette M., Ni Hong A., Jolly Robert A., Yoon Lawrence W., De Souza Angus T., Schmid Judith E., Brown Roger H. Clofibrate-induced gene expression changes in rat liver: a cross-laboratory analysis using membrane cDNA arrays. Environ Health Perspect. 2004 Mar;112(4):428–438. doi: 10.1289/ehp.6677. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burczynski M. E., McMillian M., Ciervo J., Li L., Parker J. B., Dunn R. T., 2nd, Hicken S., Farr S., Johnson M. D. Toxicogenomics-based discrimination of toxic mechanism in HepG2 human hepatoma cells. Toxicol Sci. 2000 Dec;58(2):399–415. doi: 10.1093/toxsci/58.2.399. [DOI] [PubMed] [Google Scholar]
- Chu Tzu-Ming, Deng Shibing, Wolfinger Russ, Paules Richard S., Hamadeh Hisham K. Cross-site comparison of gene expression data reveals high similarity. Environ Health Perspect. 2004 Mar;112(4):449–455. doi: 10.1289/ehp.6787. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Corton J. C., Anderson S. P., Stauber A. Central role of peroxisome proliferator-activated receptors in the actions of peroxisome proliferators. Annu Rev Pharmacol Toxicol. 2000;40:491–518. doi: 10.1146/annurev.pharmtox.40.1.491. [DOI] [PubMed] [Google Scholar]
- Gerhold D., Lu M., Xu J., Austin C., Caskey C. T., Rushmore T. Monitoring expression of genes involved in drug metabolism and toxicology using DNA microarrays. Physiol Genomics. 2001 Apr 27;5(4):161–170. doi: 10.1152/physiolgenomics.2001.5.4.161. [DOI] [PubMed] [Google Scholar]
- Goodsaid Federico M., Smith Roger J., Rosenblum I. Y. Quantitative PCR deconstruction of discrepancies between results reported by different hybridization platforms. Environ Health Perspect. 2004 Mar;112(4):456–460. doi: 10.1289/ehp.6695. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Graichen M. E., Neptun D. A., Dent J. G., Popp J. A., Leonard T. B. Effects of methapyrilene on rat hepatic xenobiotic metabolizing enzymes and liver morphology. Fundam Appl Toxicol. 1985 Feb;5(1):165–174. doi: 10.1016/0272-0590(85)90061-2. [DOI] [PubMed] [Google Scholar]
- Green S. PPAR: a mediator of peroxisome proliferator action. Mutat Res. 1995 Dec;333(1-2):101–109. doi: 10.1016/0027-5107(95)00136-0. [DOI] [PubMed] [Google Scholar]
- Hamadeh Hisham K., Bushel Pierre R., Jayadev Supriya, Martin Karla, DiSorbo Olimpia, Sieber Stella, Bennett Lee, Tennant Raymond, Stoll Raymond, Barrett J. Carl. Gene expression analysis reveals chemical-specific profiles. Toxicol Sci. 2002 Jun;67(2):219–231. doi: 10.1093/toxsci/67.2.219. [DOI] [PubMed] [Google Scholar]
- Hamadeh Hisham K., Knight Brian L., Haugen Astrid C., Sieber Stella, Amin Rupesh P., Bushel Pierre R., Stoll Raymond, Blanchard Kerry, Jayadev Supriya, Tennant Raymond W. Methapyrilene toxicity: anchorage of pathologic observations to gene expression alterations. Toxicol Pathol. 2002 Jul-Aug;30(4):470–482. doi: 10.1080/01926230290105712. [DOI] [PubMed] [Google Scholar]
- Karbowska J., Kochan Z., Zelewski L., Swierczynski J. Tissue-specific effect of clofibrate on rat lipogenic enzyme gene expression. Eur J Pharmacol. 1999 Apr 16;370(3):329–336. doi: 10.1016/s0014-2999(99)00129-6. [DOI] [PubMed] [Google Scholar]
- Latruffe N., Cherkaoui Malki M., Nicolas-Frances V., Jannin B., Clemencet M. C., Hansmannel F., Passilly-Degrace P., Berlot J. P. Peroxisome-proliferator-activated receptors as physiological sensors of fatty acid metabolism: molecular regulation in peroxisomes. Biochem Soc Trans. 2001 May;29(Pt 2):305–309. doi: 10.1042/0300-5127:0290305. [DOI] [PubMed] [Google Scholar]
- Mirsalis J. C. Genotoxicity, toxicity, and carcinogenicity of the antihistamine methapyrilene. Mutat Res. 1987 May;185(3):309–317. doi: 10.1016/0165-1110(87)90022-4. [DOI] [PubMed] [Google Scholar]
- Mitchell J. R., Snodgrass W. R., Gillette J. R. The role of biotransformation in chemical-induced liver injury. Environ Health Perspect. 1976 Jun;15:27–38. doi: 10.1289/ehp.761527. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Noguchi S., Inukai T., Kuno T., Tanaka C. The suppression of olfactory bulbectomy-induced muricide by antidepressants and antihistamines via histamine H1 receptor blocking. Physiol Behav. 1992 Jun;51(6):1123–1127. doi: 10.1016/0031-9384(92)90297-f. [DOI] [PubMed] [Google Scholar]
- Pennie William, Pettit Syril D., Lord Peter G. Toxicogenomics in risk assessment: an overview of an HESI collaborative research program. Environ Health Perspect. 2004 Mar;112(4):417–419. doi: 10.1289/ehp.6674. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reddy J. K., Goel S. K., Nemali M. R., Carrino J. J., Laffler T. G., Reddy M. K., Sperbeck S. J., Osumi T., Hashimoto T., Lalwani N. D. Transcription regulation of peroxisomal fatty acyl-CoA oxidase and enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase in rat liver by peroxisome proliferators. Proc Natl Acad Sci U S A. 1986 Mar;83(6):1747–1751. doi: 10.1073/pnas.83.6.1747. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reddy J. K., Qureshi S. A. Tumorigenicity of the hypolipidaemic peroxisome proliferator ethyl-alpha-p-chlorophenoxyisobutyrate (clofibrate) in rats. Br J Cancer. 1979 Sep;40(3):476–482. doi: 10.1038/bjc.1979.203. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Steinmetz K. L., Tyson C. K., Meierhenry E. F., Spalding J. W., Mirsalis J. C. Examination of genotoxicity, toxicity and morphologic alterations in hepatocytes following in vivo or in vitro exposure to methapyrilene. Carcinogenesis. 1988 Jun;9(6):959–963. doi: 10.1093/carcin/9.6.959. [DOI] [PubMed] [Google Scholar]
- Thomas R. S., Rank D. R., Penn S. G., Zastrow G. M., Hayes K. R., Pande K., Glover E., Silander T., Craven M. W., Reddy J. K. Identification of toxicologically predictive gene sets using cDNA microarrays. Mol Pharmacol. 2001 Dec;60(6):1189–1194. doi: 10.1124/mol.60.6.1189. [DOI] [PubMed] [Google Scholar]
- Waring J. F., Ciurlionis R., Jolly R. A., Heindel M., Ulrich R. G. Microarray analysis of hepatotoxins in vitro reveals a correlation between gene expression profiles and mechanisms of toxicity. Toxicol Lett. 2001 Mar 31;120(1-3):359–368. doi: 10.1016/s0378-4274(01)00267-3. [DOI] [PubMed] [Google Scholar]
- Waring J. F., Jolly R. A., Ciurlionis R., Lum P. Y., Praestgaard J. T., Morfitt D. C., Buratto B., Roberts C., Schadt E., Ulrich R. G. Clustering of hepatotoxins based on mechanism of toxicity using gene expression profiles. Toxicol Appl Pharmacol. 2001 Aug 15;175(1):28–42. doi: 10.1006/taap.2001.9243. [DOI] [PubMed] [Google Scholar]
- Waring Jeffrey F., Ulrich Roger G., Flint Nick, Morfitt David, Kalkuhl Arno, Staedtler Frank, Lawton Michael, Beekman Johanna M., Suter Laura. Interlaboratory evaluation of rat hepatic gene expression changes induced by methapyrilene. Environ Health Perspect. 2004 Mar;112(4):439–448. doi: 10.1289/ehp.6643. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zimmerman H. J. Various forms of chemically induced liver injury and their detection by diagnostic procedures. Environ Health Perspect. 1976 Jun;15:3–12. doi: 10.1289/ehp.76153. [DOI] [PMC free article] [PubMed] [Google Scholar]
- von Däniken A., Lutz W. K., Schlatter C. Lack of covalent binding to rat liver DNA of the hypolipidemic drugs clofibrate and fenofibrate. Toxicol Lett. 1981 Feb;7(4-5):305–310. doi: 10.1016/0378-4274(81)90053-9. [DOI] [PubMed] [Google Scholar]