Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2004 Mar;112(4):439–448. doi: 10.1289/ehp.6643

Interlaboratory evaluation of rat hepatic gene expression changes induced by methapyrilene.

Jeffrey F Waring 1, Roger G Ulrich 1, Nick Flint 1, David Morfitt 1, Arno Kalkuhl 1, Frank Staedtler 1, Michael Lawton 1, Johanna M Beekman 1, Laura Suter 1
PMCID: PMC1241897  PMID: 15033593

Abstract

Several studies using microarrays have shown that changes in gene expression provide information about the mechanism of toxicity induced by xenobiotic agents. Nevertheless, the issue of whether gene expression profiles are reproducible across different laboratories remains to be determined. To address this question, several members of the Hepatotoxicity Working Group of the International Life Sciences Institute Health and Environmental Sciences Institute evaluated the liver gene expression profiles of rats treated with methapyrilene (MP). Animals were treated at one facility, and RNA was distributed to five different sites for gene expression analysis. A preliminary evaluation of the number of modulated genes uncovered striking differences between the five different sites. However, additional data analysis demonstrated that these differences had an effect on the absolute gene expression results but not on the outcome of the study. For all users, unsupervised algorithms showed that gene expression allows the distinction of the high dose of MP from controls and low dose. In addition, the use of a supervised analysis method (support vector machines) made it possible to correctly classify samples. In conclusion, the results show that, despite some variability, robust gene expression changes were consistent between sites. In addition, key expression changes related to the mechanism of MP-induced hepatotoxicity were identified. These results provide critical information regarding the consistency of microarray results across different laboratories and shed light on the strengths and limitations of expression profiling in drug safety analysis.

Full Text

The Full Text of this article is available as a PDF (307.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Afshari C. A., Barrett J. C. Cell cycle controls: potential targets for chemical carcinogens? Environ Health Perspect. 1993 Dec;101 (Suppl 5):9–14. doi: 10.1289/ehp.93101s59. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Akinola L. A., Poutanen M., Vihko R. Cloning of rat 17 beta-hydroxysteroid dehydrogenase type 2 and characterization of tissue distribution and catalytic activity of rat type 1 and type 2 enzymes. Endocrinology. 1996 May;137(5):1572–1579. doi: 10.1210/endo.137.5.8612487. [DOI] [PubMed] [Google Scholar]
  3. Bauer I., Vollmar B., Jaeschke H., Rensing H., Kraemer T., Larsen R., Bauer M. Transcriptional activation of heme oxygenase-1 and its functional significance in acetaminophen-induced hepatitis and hepatocellular injury in the rat. J Hepatol. 2000 Sep;33(3):395–406. doi: 10.1016/s0168-8278(00)80275-5. [DOI] [PubMed] [Google Scholar]
  4. Brunelle J. K., Chandel N. S. Oxygen deprivation induced cell death: an update. Apoptosis. 2002 Dec;7(6):475–482. doi: 10.1023/a:1020668923852. [DOI] [PubMed] [Google Scholar]
  5. Budroe J. D., Shaddock J. G., Casciano D. A. A study of the potential genotoxicity of methapyrilene and related antihistamines using the hepatocyte/DNA repair assay. Mutat Res. 1984 Feb;135(2):131–137. doi: 10.1016/0165-1218(84)90166-6. [DOI] [PubMed] [Google Scholar]
  6. Burczynski M. E., McMillian M., Ciervo J., Li L., Parker J. B., Dunn R. T., 2nd, Hicken S., Farr S., Johnson M. D. Toxicogenomics-based discrimination of toxic mechanism in HepG2 human hepatoma cells. Toxicol Sci. 2000 Dec;58(2):399–415. doi: 10.1093/toxsci/58.2.399. [DOI] [PubMed] [Google Scholar]
  7. Cunningham M. L., Pippin L. L., Anderson N. L., Wenk M. L. The hepatocarcinogen methapyrilene but not the analog pyrilamine induces sustained hepatocellular replication and protein alterations in F344 rats in a 13-week feed study. Toxicol Appl Pharmacol. 1995 Apr;131(2):216–223. doi: 10.1006/taap.1995.1064. [DOI] [PubMed] [Google Scholar]
  8. Eisen M. B., Spellman P. T., Brown P. O., Botstein D. Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A. 1998 Dec 8;95(25):14863–14868. doi: 10.1073/pnas.95.25.14863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Graichen M. E., Neptun D. A., Dent J. G., Popp J. A., Leonard T. B. Effects of methapyrilene on rat hepatic xenobiotic metabolizing enzymes and liver morphology. Fundam Appl Toxicol. 1985 Feb;5(1):165–174. doi: 10.1016/0272-0590(85)90061-2. [DOI] [PubMed] [Google Scholar]
  10. Hamadeh Hisham K., Knight Brian L., Haugen Astrid C., Sieber Stella, Amin Rupesh P., Bushel Pierre R., Stoll Raymond, Blanchard Kerry, Jayadev Supriya, Tennant Raymond W. Methapyrilene toxicity: anchorage of pathologic observations to gene expression alterations. Toxicol Pathol. 2002 Jul-Aug;30(4):470–482. doi: 10.1080/01926230290105712. [DOI] [PubMed] [Google Scholar]
  11. Hernandez L., Petropoulos C. J., Hughes S. H., Lijinsky W. DNA methylation and oncogene expression in methapyrilene-induced rat liver tumors and in treated hepatocytes in culture. Mol Carcinog. 1991;4(3):203–209. doi: 10.1002/mc.2940040307. [DOI] [PubMed] [Google Scholar]
  12. Iype P. T., Bucana C. D., Kelley S. P. Carcinogenesis by nonmutagenic chemicals: early response of rat liver cells induced by methapyrilene. Cancer Res. 1985 May;45(5):2184–2191. [PubMed] [Google Scholar]
  13. Kelley K. M., Oh Y., Gargosky S. E., Gucev Z., Matsumoto T., Hwa V., Ng L., Simpson D. M., Rosenfeld R. G. Insulin-like growth factor-binding proteins (IGFBPs) and their regulatory dynamics. Int J Biochem Cell Biol. 1996 Jun;28(6):619–637. doi: 10.1016/1357-2725(96)00005-2. [DOI] [PubMed] [Google Scholar]
  14. Lee M. L., Kuo F. C., Whitmore G. A., Sklar J. Importance of replication in microarray gene expression studies: statistical methods and evidence from repetitive cDNA hybridizations. Proc Natl Acad Sci U S A. 2000 Aug 29;97(18):9834–9839. doi: 10.1073/pnas.97.18.9834. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lijinsky W., Reuber M. D., Blackwell B. N. Liver tumors induced in rats by oral administration of the antihistaminic methapyrilene hydrochloride. Science. 1980 Aug 15;209(4458):817–819. doi: 10.1126/science.7403848. [DOI] [PubMed] [Google Scholar]
  16. Liu Aiyi, Zhang Ying, Gehan Edmund, Clarke Robert. Block principal component analysis with application to gene microarray data classification. Stat Med. 2002 Nov 30;21(22):3465–3474. doi: 10.1002/sim.1263. [DOI] [PubMed] [Google Scholar]
  17. Lockhart D. J., Dong H., Byrne M. C., Follettie M. T., Gallo M. V., Chee M. S., Mittmann M., Wang C., Kobayashi M., Horton H. Expression monitoring by hybridization to high-density oligonucleotide arrays. Nat Biotechnol. 1996 Dec;14(13):1675–1680. doi: 10.1038/nbt1296-1675. [DOI] [PubMed] [Google Scholar]
  18. Lu Suying, Archer Michael C. Insulin-like growth factor binding protein-1 over-expression in transgenic mice inhibits hepatic preneoplasia. Mol Carcinog. 2003 Mar;36(3):142–146. doi: 10.1002/mc.10105. [DOI] [PubMed] [Google Scholar]
  19. Man Wai J., White Ian R., Bryant Duncan, Bugelski Peter, Camilleri Patrick, Cutler Paul, Heald Geoff, Lord Peter G., Wood John, Kramer Kerstin. Protein expression analysis of drug-mediated hepatotoxicity in the Sprague-Dawley rat. Proteomics. 2002 Nov;2(11):1577–1585. doi: 10.1002/1615-9861(200211)2:11<1577::AID-PROT1577>3.0.CO;2-G. [DOI] [PubMed] [Google Scholar]
  20. Mohn K. L., Melby A. E., Tewari D. S., Laz T. M., Taub R. The gene encoding rat insulinlike growth factor-binding protein 1 is rapidly and highly induced in regenerating liver. Mol Cell Biol. 1991 Mar;11(3):1393–1401. doi: 10.1128/mcb.11.3.1393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Ratra G. S., Cottrell S., Powell C. J. Effects of induction and inhibition of cytochromes P450 on the hepatotoxicity of methapyrilene. Toxicol Sci. 1998 Nov;46(1):185–196. doi: 10.1006/toxs.1998.2513. [DOI] [PubMed] [Google Scholar]
  22. Ratra G. S., Morgan W. A., Mullervy J., Powell C. J., Wright M. C. Methapyrilene hepatotoxicity is associated with oxidative stress, mitochondrial disfunction and is prevented by the Ca2+ channel blocker verapamil. Toxicology. 1998 Sep 15;130(2-3):79–93. doi: 10.1016/s0300-483x(98)00096-1. [DOI] [PubMed] [Google Scholar]
  23. Ratra G. S., Powell C. J., Park B. K., Maggs J. L., Cottrell S. Methapyrilene hepatotoxicity is associated with increased hepatic glutathione, the formation of glucuronide conjugates, and enterohepatic recirculation. Chem Biol Interact. 2000 Dec 15;129(3):279–295. doi: 10.1016/s0009-2797(00)00253-2. [DOI] [PubMed] [Google Scholar]
  24. Reilly T. P., Bourdi M., Brady J. N., Pise-Masison C. A., Radonovich M. F., George J. W., Pohl L. R. Expression profiling of acetaminophen liver toxicity in mice using microarray technology. Biochem Biophys Res Commun. 2001 Mar 23;282(1):321–328. doi: 10.1006/bbrc.2001.4576. [DOI] [PubMed] [Google Scholar]
  25. Steinmetz K. L., Tyson C. K., Meierhenry E. F., Spalding J. W., Mirsalis J. C. Examination of genotoxicity, toxicity and morphologic alterations in hepatocytes following in vivo or in vitro exposure to methapyrilene. Carcinogenesis. 1988 Jun;9(6):959–963. doi: 10.1093/carcin/9.6.959. [DOI] [PubMed] [Google Scholar]
  26. Stokes Alan H., Freeman Willard M., Mitchell Samara G., Burnette Teresa A., Hellmann Gary M., Vrana Kent E. Induction of GADD45 and GADD153 in neuroblastoma cells by dopamine-induced toxicity. Neurotoxicology. 2002 Dec;23(6):675–684. doi: 10.1016/S0161-813X(02)00093-1. [DOI] [PubMed] [Google Scholar]
  27. Thomas R. S., Rank D. R., Penn S. G., Zastrow G. M., Hayes K. R., Pande K., Glover E., Silander T., Craven M. W., Reddy J. K. Identification of toxicologically predictive gene sets using cDNA microarrays. Mol Pharmacol. 2001 Dec;60(6):1189–1194. doi: 10.1124/mol.60.6.1189. [DOI] [PubMed] [Google Scholar]
  28. Tirone F. The gene PC3(TIS21/BTG2), prototype member of the PC3/BTG/TOB family: regulator in control of cell growth, differentiation, and DNA repair? J Cell Physiol. 2001 May;187(2):155–165. doi: 10.1002/jcp.1062. [DOI] [PubMed] [Google Scholar]
  29. Waring J. F., Jolly R. A., Ciurlionis R., Lum P. Y., Praestgaard J. T., Morfitt D. C., Buratto B., Roberts C., Schadt E., Ulrich R. G. Clustering of hepatotoxins based on mechanism of toxicity using gene expression profiles. Toxicol Appl Pharmacol. 2001 Aug 15;175(1):28–42. doi: 10.1006/taap.2001.9243. [DOI] [PubMed] [Google Scholar]
  30. Waring Jeffrey F., Gum Rebecca, Morfitt David, Jolly Robert A., Ciurlionis Rita, Heindel Matthew, Gallenberg Lori, Buratto Bruno, Ulrich Roger G. Identifying toxic mechanisms using DNA microarrays: evidence that an experimental inhibitor of cell adhesion molecule expression signals through the aryl hydrocarbon nuclear receptor. Toxicology. 2002 Dec 27;181-182:537–550. doi: 10.1016/s0300-483x(02)00477-8. [DOI] [PubMed] [Google Scholar]
  31. Waring Jeffrey F., Halbert Donald N. The promise of toxicogenomics. Curr Opin Mol Ther. 2002 Jun;4(3):229–235. [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES