Abstract
Microarrays allow for the simultaneous measurement of changes in the levels of thousands of messenger RNAs within a single experiment. As such, the potential for the application of transcription profiling to preclinical safety assessment and mechanism-based risk assessment is profound. However, several practical and technical challenges remain. Among these are nomenclature issues, platform-specific data formats, and the lack of uniform analysis methods and tools. Experiments were designed to address biological, technical, and methodological variability, to evaluate different approaches to data analysis, and to understand the application of the technology to other profiling methodologies and to mechanism-based risk assessment. These goals were addressed using experimental information derived from analysis of the biological response to three mechanistically distinct nephrotoxins: cisplatin, gentamicin, and puromycin aminonucleoside. In spite of the technical challenges, the transcription profiling data yielded mechanistically and topographically valuable information. The analyses detailed in the articles from the Nephrotoxicity Working Group of the International Life Sciences Institute Health and Environmental Sciences Institute suggest at least equal sensitivity of microarray technology compared to traditional end points. Additionally, microarray analysis of these prototypical nephrotoxicants provided an opportunity for the development of candidate bridging biomarkers of nephrotoxicity. The potential future extension of these applications for risk assessment is also discussed.
Full Text
The Full Text of this article is available as a PDF (139.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Amin Rupesh P., Vickers Alison E., Sistare Frank, Thompson Karol L., Roman Richard J., Lawton Michael, Kramer Jeffrey, Hamadeh Hisham K., Collins Jennifer, Grissom Sherry. Identification of putative gene based markers of renal toxicity. Environ Health Perspect. 2004 Mar;112(4):465–479. doi: 10.1289/ehp.6683. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dobyan D. C., Levi J., Jacobs C., Kosek J., Weiner M. W. Mechanism of cis-platinum nephrotoxicity: II. Morphologic observations. J Pharmacol Exp Ther. 1980 Jun;213(3):551–556. [PubMed] [Google Scholar]
- Duan S. B., Wu H. W., Luo J. A., Liu F. Y. Assessment of renal function in the early stages of nephrotoxicity induced by iodinated contrast media. Nephron. 1999;83(2):122–125. doi: 10.1159/000045488. [DOI] [PubMed] [Google Scholar]
- Gibey R., Dupond J. L., Alber D., Leconte des Floris R., Henry J. C. Predictive value of urinary N-acetyl-beta-D-glucosaminidase (NAG), alanine-aminopeptidase (AAP) and beta-2-microglobulin (beta 2M) in evaluating nephrotoxicity of gentamicin. Clin Chim Acta. 1981 Oct 8;116(1):25–34. doi: 10.1016/0009-8981(81)90165-0. [DOI] [PubMed] [Google Scholar]
- Grond J., Muller E. W., van Goor H., Weening J. J., Elema J. D. Differences in puromycin aminonucleoside nephrosis in two rat strains. Kidney Int. 1988 Feb;33(2):524–529. doi: 10.1038/ki.1988.29. [DOI] [PubMed] [Google Scholar]
- Hamadeh Hisham K., Knight Brian L., Haugen Astrid C., Sieber Stella, Amin Rupesh P., Bushel Pierre R., Stoll Raymond, Blanchard Kerry, Jayadev Supriya, Tennant Raymond W. Methapyrilene toxicity: anchorage of pathologic observations to gene expression alterations. Toxicol Pathol. 2002 Jul-Aug;30(4):470–482. doi: 10.1080/01926230290105712. [DOI] [PubMed] [Google Scholar]
- Kilty C., Doyle S., Hassett B., Manning F. Glutathione S-transferases as biomarkers of organ damage: applications of rodent and canine GST enzyme immunoassays. Chem Biol Interact. 1998 Apr 24;111-112:123–135. doi: 10.1016/s0009-2797(97)00156-7. [DOI] [PubMed] [Google Scholar]
- Loeb W. F. The measurement of renal injury. Toxicol Pathol. 1998 Jan-Feb;26(1):26–28. doi: 10.1177/019262339802600103. [DOI] [PubMed] [Google Scholar]
- Mattes William B., Pettit Syril D., Sansone Susanna-Assunta, Bushel Pierre R., Waters Michael D. Database development in toxicogenomics: issues and efforts. Environ Health Perspect. 2004 Mar;112(4):495–505. doi: 10.1289/ehp.6697. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Naidu S. G., Lee F. T., Jr Contrast nephrotoxicity: predictive value of urinary enzyme markers in a rat model. Acad Radiol. 1994 Sep;1(1):3–9. doi: 10.1016/s1076-6332(05)80775-5. [DOI] [PubMed] [Google Scholar]
- Pennie William, Pettit Syril D., Lord Peter G. Toxicogenomics in risk assessment: an overview of an HESI collaborative research program. Environ Health Perspect. 2004 Mar;112(4):417–419. doi: 10.1289/ehp.6674. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Price R. G. The role of NAG (N-acetyl-beta-D-glucosaminidase) in the diagnosis of kidney disease including the monitoring of nephrotoxicity. Clin Nephrol. 1992;38 (Suppl 1):S14–S19. [PubMed] [Google Scholar]
- Scherberich J. E., Mondorf W. A. Beurteilung der Nephrotoxizität von Pharmaka über die Ausscheidung tubulusspezifischer Membranantigene und Enzyme. Z Gesamte Inn Med. 1983 Nov 1;38(21):571–580. [PubMed] [Google Scholar]
- Taylor S. A., Chivers I. D., Price R. G., Arce-Tomas M., Milligan P., Francini I., Alinovi R., Cavazzini S., Bergamaschi E., Vittori M. The assessment of biomarkers to detect nephrotoxicity using an integrated database. Environ Res. 1997 Oct;75(1):23–33. doi: 10.1006/enrs.1997.3775. [DOI] [PubMed] [Google Scholar]
- Thompson Karol L., Afshari Cynthia A., Amin Rupesh P., Bertram Timothy A., Car Bruce, Cunningham Michael, Kind Clive, Kramer Jeffrey A., Lawton Michael, Mirsky Michael. Identification of platform-independent gene expression markers of cisplatin nephrotoxicity. Environ Health Perspect. 2004 Mar;112(4):488–494. doi: 10.1289/ehp.6676. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vera-Roman J., Krishnakantha T. P., Cuppage F. E. Gentamicin nephrotoxicity in rats. I. Acute biochemical and ultrastructural effects. Lab Invest. 1975 Oct;33(4):412–417. [PubMed] [Google Scholar]
