Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2004 Mar;112(4):465–479. doi: 10.1289/ehp.6683

Identification of putative gene based markers of renal toxicity.

Rupesh P Amin 1, Alison E Vickers 1, Frank Sistare 1, Karol L Thompson 1, Richard J Roman 1, Michael Lawton 1, Jeffrey Kramer 1, Hisham K Hamadeh 1, Jennifer Collins 1, Sherry Grissom 1, Lee Bennett 1, C Jeffrey Tucker 1, Stacie Wild 1, Clive Kind 1, Victor Oreffo 1, John W Davis 2nd 1, Sandra Curtiss 1, Jorge M Naciff 1, Michael Cunningham 1, Raymond Tennant 1, James Stevens 1, Bruce Car 1, Timothy A Bertram 1, Cynthia A Afshari 1
PMCID: PMC1241901  PMID: 15033597

Abstract

This study, designed and conducted as part of the International Life Sciences Institute working group on the Application of Genomics and Proteomics, examined the changes in the expression profile of genes associated with the administration of three different nephrotoxicants--cisplatin, gentamicin, and puromycin--to assess the usefulness of microarrays in the understanding of mechanism(s) of nephrotoxicity. Male Sprague-Dawley rats were treated with daily doses of puromycin (5-20 mg/kg/day for 21 days), gentamicin (2-240 mg/kg/day for 7 days), or a single dose of cisplatin (0.1-5 mg/kg). Groups of rats were sacrificed at various times after administration of these compounds for standard clinical chemistry, urine analysis, and histological evaluation of the kidney. RNA was extracted from the kidney for microarray analysis. Principal component analysis and gene expression-based clustering of compound effects confirmed sample separation based on dose, time, and degree of renal toxicity. In addition, analysis of the profile components revealed some novel changes in the expression of genes that appeared to be associated with injury in specific portions of the nephron and reflected the mechanism of action of these various nephrotoxicants. For example, although puromycin is thought to specifically promote injury of the podocytes in the glomerulus, the changes in gene expression after chronic exposure of this compound suggested a pattern similar to the known proximal tubular nephrotoxicants cisplatin and gentamicin; this prediction was confirmed histologically. We conclude that renal gene expression profiling coupled with analysis of classical end points affords promising opportunities to reveal potential new mechanistic markers of renal toxicity.

Full Text

The Full Text of this article is available as a PDF (2.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andoh T. F., Gardner M. P., Bennett W. M. Protective effects of dietary L-arginine supplementation on chronic cyclosporine nephrotoxicity. Transplantation. 1997 Nov 15;64(9):1236–1240. doi: 10.1097/00007890-199711150-00002. [DOI] [PubMed] [Google Scholar]
  2. Aulitzky W. K., Schlegel P. N., Wu D. F., Cheng C. Y., Chen C. L., Li P. S., Goldstein M., Reidenberg M., Bardin C. W. Measurement of urinary clusterin as an index of nephrotoxicity. Proc Soc Exp Biol Med. 1992 Jan;199(1):93–96. doi: 10.3181/00379727-199-43335. [DOI] [PubMed] [Google Scholar]
  3. Bailly Veronique, Zhang Zhiwei, Meier Werner, Cate Richard, Sanicola Michele, Bonventre Joseph V. Shedding of kidney injury molecule-1, a putative adhesion protein involved in renal regeneration. J Biol Chem. 2002 Jul 23;277(42):39739–39748. doi: 10.1074/jbc.M200562200. [DOI] [PubMed] [Google Scholar]
  4. Bushel P. R., Hamadeh H., Bennett L., Sieber S., Martin K., Nuwaysir E. F., Johnson K., Reynolds K., Paules R. S., Afshari C. A. MAPS: a microarray project system for gene expression experiment information and data validation. Bioinformatics. 2001 Jun;17(6):564–565. doi: 10.1093/bioinformatics/17.6.564. [DOI] [PubMed] [Google Scholar]
  5. Bushel Pierre R., Hamadeh Hisham K., Bennett Lee, Green James, Ableson Alan, Misener Stephen, Afshari Cynthia A., Paules Richard S. Computational selection of distinct class- and subclass-specific gene expression signatures. J Biomed Inform. 2002 Jun;35(3):160–170. doi: 10.1016/s1532-0464(02)00525-7. [DOI] [PubMed] [Google Scholar]
  6. Clements J. A. The glandular kallikrein family of enzymes: tissue-specific expression and hormonal regulation. Endocr Rev. 1989 Nov;10(4):393–419. doi: 10.1210/edrv-10-4-393. [DOI] [PubMed] [Google Scholar]
  7. Correa-Rotter R., Ibarra-Rubio M. E., Schwochau G., Cruz C., Silkensen J. R., Pedraza-Chaverri J., Chmielewski D., Rosenberg M. E. Induction of clusterin in tubules of nephrotic rats. J Am Soc Nephrol. 1998 Jan;9(1):33–37. doi: 10.1681/ASN.V9133. [DOI] [PubMed] [Google Scholar]
  8. DeRisi J., Penland L., Brown P. O., Bittner M. L., Meltzer P. S., Ray M., Chen Y., Su Y. A., Trent J. M. Use of a cDNA microarray to analyse gene expression patterns in human cancer. Nat Genet. 1996 Dec;14(4):457–460. doi: 10.1038/ng1296-457. [DOI] [PubMed] [Google Scholar]
  9. Devireddy L. R., Teodoro J. G., Richard F. A., Green M. R. Induction of apoptosis by a secreted lipocalin that is transcriptionally regulated by IL-3 deprivation. Science. 2001 Aug 3;293(5531):829–834. doi: 10.1126/science.1061075. [DOI] [PubMed] [Google Scholar]
  10. Eisen M. B., Spellman P. T., Brown P. O., Botstein D. Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A. 1998 Dec 8;95(25):14863–14868. doi: 10.1073/pnas.95.25.14863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Flower D. R., North A. C., Sansom C. E. The lipocalin protein family: structural and sequence overview. Biochim Biophys Acta. 2000 Oct 18;1482(1-2):9–24. doi: 10.1016/s0167-4838(00)00148-5. [DOI] [PubMed] [Google Scholar]
  12. Flower D. R. The lipocalin protein family: structure and function. Biochem J. 1996 Aug 15;318(Pt 1):1–14. doi: 10.1042/bj3180001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hamadeh Hisham K., Bushel Pierre R., Jayadev Supriya, DiSorbo Olimpia, Bennett Lee, Li Leping, Tennant Raymond, Stoll Raymond, Barrett J. Carl, Paules Richard S. Prediction of compound signature using high density gene expression profiling. Toxicol Sci. 2002 Jun;67(2):232–240. doi: 10.1093/toxsci/67.2.232. [DOI] [PubMed] [Google Scholar]
  14. Hamadeh Hisham K., Bushel Pierre R., Jayadev Supriya, Martin Karla, DiSorbo Olimpia, Sieber Stella, Bennett Lee, Tennant Raymond, Stoll Raymond, Barrett J. Carl. Gene expression analysis reveals chemical-specific profiles. Toxicol Sci. 2002 Jun;67(2):219–231. doi: 10.1093/toxsci/67.2.219. [DOI] [PubMed] [Google Scholar]
  15. Hamadeh Hisham K., Knight Brian L., Haugen Astrid C., Sieber Stella, Amin Rupesh P., Bushel Pierre R., Stoll Raymond, Blanchard Kerry, Jayadev Supriya, Tennant Raymond W. Methapyrilene toxicity: anchorage of pathologic observations to gene expression alterations. Toxicol Pathol. 2002 Jul-Aug;30(4):470–482. doi: 10.1080/01926230290105712. [DOI] [PubMed] [Google Scholar]
  16. Hammerman M. R. Potential role of growth factors in the prophylaxis and treatment of acute renal failure. Kidney Int Suppl. 1998 Feb;64:S19–S22. [PubMed] [Google Scholar]
  17. Han Won K., Bailly Veronique, Abichandani Rekha, Thadhani Ravi, Bonventre Joseph V. Kidney Injury Molecule-1 (KIM-1): a novel biomarker for human renal proximal tubule injury. Kidney Int. 2002 Jul;62(1):237–244. doi: 10.1046/j.1523-1755.2002.00433.x. [DOI] [PubMed] [Google Scholar]
  18. Hoffmann A., Conradt H. S., Gross G., Nimtz M., Lottspeich F., Wurster U. Purification and chemical characterization of beta-trace protein from human cerebrospinal fluid: its identification as prostaglandin D synthase. J Neurochem. 1993 Aug;61(2):451–456. doi: 10.1111/j.1471-4159.1993.tb02145.x. [DOI] [PubMed] [Google Scholar]
  19. Hoffmann A., Nimtz M., Conradt H. S. Molecular characterization of beta-trace protein in human serum and urine: a potential diagnostic marker for renal diseases. Glycobiology. 1997 Jun;7(4):499–506. doi: 10.1093/glycob/7.4.499. [DOI] [PubMed] [Google Scholar]
  20. Huang Q., Dunn R. T., 2nd, Jayadev S., DiSorbo O., Pack F. D., Farr S. B., Stoll R. E., Blanchard K. T. Assessment of cisplatin-induced nephrotoxicity by microarray technology. Toxicol Sci. 2001 Oct;63(2):196–207. doi: 10.1093/toxsci/63.2.196. [DOI] [PubMed] [Google Scholar]
  21. Hudkins K. L., Giachelli C. M., Cui Y., Couser W. G., Johnson R. J., Alpers C. E. Osteopontin expression in fetal and mature human kidney. J Am Soc Nephrol. 1999 Mar;10(3):444–457. doi: 10.1681/ASN.V103444. [DOI] [PubMed] [Google Scholar]
  22. Hudkins K. L., Le Q. C., Segerer S., Johnson R. J., Davis C. L., Giachelli C. M., Alpers C. E. Osteopontin expression in human cyclosporine toxicity. Kidney Int. 2001 Aug;60(2):635–640. doi: 10.1046/j.1523-1755.2001.060002635.x. [DOI] [PubMed] [Google Scholar]
  23. Ichimura T., Bonventre J. V., Bailly V., Wei H., Hession C. A., Cate R. L., Sanicola M. Kidney injury molecule-1 (KIM-1), a putative epithelial cell adhesion molecule containing a novel immunoglobulin domain, is up-regulated in renal cells after injury. J Biol Chem. 1998 Feb 13;273(7):4135–4142. doi: 10.1074/jbc.273.7.4135. [DOI] [PubMed] [Google Scholar]
  24. Khan Saeed R., Johnson Joanne M., Peck Ammon B., Cornelius Janet G., Glenton Patricia A. Expression of osteopontin in rat kidneys: induction during ethylene glycol induced calcium oxalate nephrolithiasis. J Urol. 2002 Sep;168(3):1173–1181. doi: 10.1016/S0022-5347(05)64621-6. [DOI] [PubMed] [Google Scholar]
  25. Kirsztajn Gianna Mastroianni, Nishida Sonia K., Silva Marcelo S., Ajzen Horacio, Moura Luiz A., Pereira Aparecido B. Urinary retinol-binding protein as a prognostic marker in glomerulopathies. Nephron. 2002 Apr;90(4):424–431. doi: 10.1159/000054730. [DOI] [PubMed] [Google Scholar]
  26. Kramer Jeffrey A., Pettit Syril D., Amin Rupesh P., Bertram Timothy A., Car Bruce, Cunningham Michael, Curtiss Sandra W., Davis John W., Kind Clive, Lawton Michael. Overview on the application of transcription profiling using selected nephrotoxicants for toxicology assessment. Environ Health Perspect. 2004 Mar;112(4):460–464. doi: 10.1289/ehp.6673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Laterza Omar F., Price Christopher P., Scott Mitchell G. Cystatin C: an improved estimator of glomerular filtration rate? Clin Chem. 2002 May;48(5):699–707. [PubMed] [Google Scholar]
  28. Lee H., Kim J. H., Chae Y. J., Ogawa H., Lee M. H., Gerton G. L. Creatine synthesis and transport systems in the male rat reproductive tract. Biol Reprod. 1998 Jun;58(6):1437–1444. doi: 10.1095/biolreprod58.6.1437. [DOI] [PubMed] [Google Scholar]
  29. Lockhart D. J., Dong H., Byrne M. C., Follettie M. T., Gallo M. V., Chee M. S., Mittmann M., Wang C., Kobayashi M., Horton H. Expression monitoring by hybridization to high-density oligonucleotide arrays. Nat Biotechnol. 1996 Dec;14(13):1675–1680. doi: 10.1038/nbt1296-1675. [DOI] [PubMed] [Google Scholar]
  30. Magil A. B., Pichler R. H., Johnson R. J. Osteopontin in chronic puromycin aminonucleoside nephrosis. J Am Soc Nephrol. 1997 Sep;8(9):1383–1390. doi: 10.1681/ASN.V891383. [DOI] [PubMed] [Google Scholar]
  31. Makover A., Soprano D. R., Wyatt M. L., Goodman D. S. Localization of retinol-binding protein messenger RNA in the rat kidney and in perinephric fat tissue. J Lipid Res. 1989 Feb;30(2):171–180. [PubMed] [Google Scholar]
  32. Matejka G. L. Expression of GH receptor, IGF-I receptor and IGF-I mRNA in the kidney and liver of rats recovering from unilateral renal ischemia. Growth Horm IGF Res. 1998 Feb;8(1):77–82. doi: 10.1016/s1096-6374(98)80325-0. [DOI] [PubMed] [Google Scholar]
  33. Mattenheimer H. Enzymology of kidney tissue. Curr Probl Clin Biochem. 1968;2:119–145. [PubMed] [Google Scholar]
  34. Melegos D. N., Grass L., Pierratos A., Diamandis E. P. Highly elevated levels of prostaglandin D synthase in the serum of patients with renal failure. Urology. 1999 Jan;53(1):32–37. doi: 10.1016/s0090-4295(98)00453-1. [DOI] [PubMed] [Google Scholar]
  35. Murakami H., Yayama K., Chao L., Chao J. Human kallikrein gene delivery protects against gentamycin-induced nephrotoxicity in rats. Kidney Int. 1998 May;53(5):1305–1313. doi: 10.1046/j.1523-1755.1998.00867.x. [DOI] [PubMed] [Google Scholar]
  36. Muramatsu Yasunari, Tsujie Michiko, Kohda Yukimasa, Pham Bertha, Perantoni Alan O., Zhao Hong, Jo Sang-Kyung, Yuen Peter S. T., Craig Leonard, Hu Xuzhen. Early detection of cysteine rich protein 61 (CYR61, CCN1) in urine following renal ischemic reperfusion injury. Kidney Int. 2002 Nov;62(5):1601–1610. doi: 10.1046/j.1523-1755.2002.00633.x. [DOI] [PubMed] [Google Scholar]
  37. Nagasawa Y., Takenaka M., Kaimori J., Matsuoka Y., Akagi Y., Tsujie M., Imai E., Hori M. Rapid and diverse changes of gene expression in the kidneys of protein-overload proteinuria mice detected by microarray analysis. Nephrol Dial Transplant. 2001 May;16(5):923–931. doi: 10.1093/ndt/16.5.923. [DOI] [PubMed] [Google Scholar]
  38. Nagata A., Suzuki Y., Igarashi M., Eguchi N., Toh H., Urade Y., Hayaishi O. Human brain prostaglandin D synthase has been evolutionarily differentiated from lipophilic-ligand carrier proteins. Proc Natl Acad Sci U S A. 1991 May 1;88(9):4020–4024. doi: 10.1073/pnas.88.9.4020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Nakao A., Watanabe T., Ohishi N., Toda A., Asano K., Taniguchi S., Nosaka K., Noiri E., Suzuki T., Sakai T. Ubiquitous localization of leukotriene A4 hydrolase in the rat nephron. Kidney Int. 1999 Jan;55(1):100–108. doi: 10.1046/j.1523-1755.1999.00257.x. [DOI] [PubMed] [Google Scholar]
  40. Newman David J. Cystatin C. Ann Clin Biochem. 2002 Mar;39(Pt 2):89–104. doi: 10.1258/0004563021901847. [DOI] [PubMed] [Google Scholar]
  41. Nielsen B. S., Borregaard N., Bundgaard J. R., Timshel S., Sehested M., Kjeldsen L. Induction of NGAL synthesis in epithelial cells of human colorectal neoplasia and inflammatory bowel diseases. Gut. 1996 Mar;38(3):414–420. doi: 10.1136/gut.38.3.414. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Norman J. T., Bohman R. E., Fischmann G., Bowen J. W., McDonough A., Slamon D., Fine L. G. Patterns of mRNA expression during early cell growth differ in kidney epithelial cells destined to undergo compensatory hypertrophy versus regenerative hyperplasia. Proc Natl Acad Sci U S A. 1988 Sep;85(18):6768–6772. doi: 10.1073/pnas.85.18.6768. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Oda Hiroshi, Shiina Yasuhiko, Seiki Kousuke, Sato Nobuyuki, Eguchi Naomi, Urade Yoshihiro. Development and evaluation of a practical ELISA for human urinary lipocalin-type prostaglandin D synthase. Clin Chem. 2002 Sep;48(9):1445–1453. [PubMed] [Google Scholar]
  44. Ortiz A., Lorz C., Justo P., Catalán M. P., Egido J. Contribution of apoptotic cell death to renal injury. J Cell Mol Med. 2001 Jan-Mar;5(1):18–32. doi: 10.1111/j.1582-4934.2001.tb00135.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Pennie William, Pettit Syril D., Lord Peter G. Toxicogenomics in risk assessment: an overview of an HESI collaborative research program. Environ Health Perspect. 2004 Mar;112(4):417–419. doi: 10.1289/ehp.6674. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Pichler R. H., Franceschini N., Young B. A., Hugo C., Andoh T. F., Burdmann E. A., Shankland S. J., Alpers C. E., Bennett W. M., Couser W. G. Pathogenesis of cyclosporine nephropathy: roles of angiotensin II and osteopontin. J Am Soc Nephrol. 1995 Oct;6(4):1186–1196. doi: 10.1681/ASN.V641186. [DOI] [PubMed] [Google Scholar]
  47. Ritchie H. H., Hou H., Veis A., Butler W. T. Cloning and sequence determination of rat dentin sialoprotein, a novel dentin protein. J Biol Chem. 1994 Feb 4;269(5):3698–3702. [PubMed] [Google Scholar]
  48. Rosenberg M. E., Silkensen J. Clusterin and the kidney. Exp Nephrol. 1995 Jan-Feb;3(1):9–14. [PubMed] [Google Scholar]
  49. Rosenberg Mark E., Girton Richard, Finkel David, Chmielewski David, Barrie Arthur, 3rd, Witte David P., Zhu Guang, Bissler John J., Harmony Judith A. K., Aronow Bruce J. Apolipoprotein J/clusterin prevents a progressive glomerulopathy of aging. Mol Cell Biol. 2002 Mar;22(6):1893–1902. doi: 10.1128/MCB.22.6.1893-1902.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Safirstein R., Price P. M., Saggi S. J., Harris R. C. Changes in gene expression after temporary renal ischemia. Kidney Int. 1990 Jun;37(6):1515–1521. doi: 10.1038/ki.1990.143. [DOI] [PubMed] [Google Scholar]
  51. Saunders J. R., Aminian A., McRae J. L., O'Farrell K. A., Adam W. R., Murphy B. F. Clusterin depletion enhances immune glomerular injury in the isolated perfused kidney. Kidney Int. 1994 Mar;45(3):817–827. doi: 10.1038/ki.1994.108. [DOI] [PubMed] [Google Scholar]
  52. Silkensen J. R., Agarwal A., Nath K. A., Manivel J. C., Rosenberg M. E. Temporal induction of clusterin in cisplatin nephrotoxicity. J Am Soc Nephrol. 1997 Feb;8(2):302–305. doi: 10.1681/ASN.V82302. [DOI] [PubMed] [Google Scholar]
  53. Srivastava R. C., Farookh A., Ahmad N., Misra M., Hasan S. K., Husain M. M. Evidence for the involvement of nitric oxide in cisplatin-induced toxicity in rats. Biometals. 1996 Apr;9(2):139–142. doi: 10.1007/BF00144618. [DOI] [PubMed] [Google Scholar]
  54. Star Robert, Hostetter Thomas, Hortin Glen L. New markers for kidney disease. Clin Chem. 2002 Sep;48(9):1375–1376. [PubMed] [Google Scholar]
  55. Thompson Karol L., Afshari Cynthia A., Amin Rupesh P., Bertram Timothy A., Car Bruce, Cunningham Michael, Kind Clive, Kramer Jeffrey A., Lawton Michael, Mirsky Michael. Identification of platform-independent gene expression markers of cisplatin nephrotoxicity. Environ Health Perspect. 2004 Mar;112(4):488–494. doi: 10.1289/ehp.6676. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Toback F. G. Regeneration after acute tubular necrosis. Kidney Int. 1992 Jan;41(1):226–246. doi: 10.1038/ki.1992.32. [DOI] [PubMed] [Google Scholar]
  57. Tomé L. A., Yu L., de Castro I., Campos S. B., Seguro A. C. Beneficial and harmful effects of L-arginine on renal ischaemia. Nephrol Dial Transplant. 1999 May;14(5):1139–1145. doi: 10.1093/ndt/14.5.1139. [DOI] [PubMed] [Google Scholar]
  58. Urade Y., Hayaishi O. Prostaglandin D synthase: structure and function. Vitam Horm. 2000;58:89–120. doi: 10.1016/s0083-6729(00)58022-4. [DOI] [PubMed] [Google Scholar]
  59. Valdivielso José M., Blantz Roland C. Acute renal failure: is nitric oxide the bad guy? Antioxid Redox Signal. 2002 Dec;4(6):925–934. doi: 10.1089/152308602762197461. [DOI] [PubMed] [Google Scholar]
  60. Waring J. F., Ciurlionis R., Jolly R. A., Heindel M., Ulrich R. G. Microarray analysis of hepatotoxins in vitro reveals a correlation between gene expression profiles and mechanisms of toxicity. Toxicol Lett. 2001 Mar 31;120(1-3):359–368. doi: 10.1016/s0378-4274(01)00267-3. [DOI] [PubMed] [Google Scholar]
  61. Waring J. F., Jolly R. A., Ciurlionis R., Lum P. Y., Praestgaard J. T., Morfitt D. C., Buratto B., Roberts C., Schadt E., Ulrich R. G. Clustering of hepatotoxins based on mechanism of toxicity using gene expression profiles. Toxicol Appl Pharmacol. 2001 Aug 15;175(1):28–42. doi: 10.1006/taap.2001.9243. [DOI] [PubMed] [Google Scholar]
  62. Yan L., Borregaard N., Kjeldsen L., Moses M. A. The high molecular weight urinary matrix metalloproteinase (MMP) activity is a complex of gelatinase B/MMP-9 and neutrophil gelatinase-associated lipocalin (NGAL). Modulation of MMP-9 activity by NGAL. J Biol Chem. 2001 Aug 2;276(40):37258–37265. doi: 10.1074/jbc.M106089200. [DOI] [PubMed] [Google Scholar]
  63. Yang Jun, Mori Kiyoshi, Li Jau Yi, Barasch Jonathan. Iron, lipocalin, and kidney epithelia. Am J Physiol Renal Physiol. 2003 Jul;285(1):F9–18. doi: 10.1152/ajprenal.00008.2003. [DOI] [PubMed] [Google Scholar]
  64. Yasuda M., Sugahara K., Zhang J., Shuin T., Kodama H. Effect of cisplatin treatment on the urinary excretion of guanidinoacetic acid, creatinine and creatine in patients with urinary tract neoplasm, and on superoxide generation in human neutrophils. Physiol Chem Phys Med NMR. 2000;32(2):119–125. [PubMed] [Google Scholar]
  65. Yoshida Takumi, Kurella Manjula, Beato Francisca, Min Hyunsuk, Ingelfinger Julie R., Stears Robin L., Swinford Rita D., Gullans Steven R., Tang Shiow-Shih. Monitoring changes in gene expression in renal ischemia-reperfusion in the rat. Kidney Int. 2002 May;61(5):1646–1654. doi: 10.1046/j.1523-1755.2002.00341.x. [DOI] [PubMed] [Google Scholar]
  66. Yu H., Anderson P. J., Freedman B. I., Rich S. S., Bowden D. W. Genomic structure of the human plasma prekallikrein gene, identification of allelic variants, and analysis in end-stage renal disease. Genomics. 2000 Oct 15;69(2):225–234. doi: 10.1006/geno.2000.6330. [DOI] [PubMed] [Google Scholar]
  67. Yu Hongrun, Song Qing, Freedman Barry I., Chao Julie, Chao Lee, Rich Stephen S., Bowden Donald W. Association of the tissue kallikrein gene promoter with ESRD and hypertension. Kidney Int. 2002 Mar;61(3):1030–1039. doi: 10.1046/j.1523-1755.2002.00198.x. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES