Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2004 Apr;112(5):511–515. doi: 10.1289/ehp.6719

Structural changes in gill DNA reveal the effects of contaminants on Puget Sound fish.

Donald C Malins 1, John J Stegeman 1, Jack W Anderson 1, Paul M Johnson 1, Jordan Gold 1, Katie M Anderson 1
PMCID: PMC1241913  PMID: 15064153

Abstract

Structural differences were identified in gill DNA from two groups of English sole collected from Puget Sound, Washington, in October 2000. One group was from the industrialized Duwamish River (DR) in Seattle and the other from relatively clean Quartermaster Harbor (QMH). Chemical markers of sediment contamination [e.g., polynuclear aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs)] established that the DR was substantially more contaminated than QMH. The levels of these chemicals in the sediments of both sites were consistent with levels of cytochrome P450 1A (CYP1A) expression in the gills of English sole from the same sites. Structural differences in gill DNA between the groups were evinced via statistical models of Fourier transform-infrared (FT-IR) spectra. Marked structural damage was found in the gill DNA of the DR fish as reflected in differences in base functional groups (e.g., C-O and NH2) and conformational properties (e.g., arising from perturbations in vertical base stacking interactions). These DNA differences were used to discriminate between the two fish groups through principal components analysis of mean FT-IR spectra. In addition, logistic regression analysis allowed for the development of a "DNA damage index" to assess the effects of contaminants on the gill. The evidence implies that environmental chemicals contribute to the DNA changes in the gill. The damaged DNA is a promising marker for identifying, through gill biopsies, contaminant effects on fish.

Full Text

The Full Text of this article is available as a PDF (507.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brittelli M. R., Chen H. H., Muska C. F. Induction of branchial (gill) neoplasms in the medaka fish (Oryzias latipes) by N-methyl-N'-nitro-N-nitrosoguanidine. Cancer Res. 1985 Jul;45(7):3209–3214. [PubMed] [Google Scholar]
  2. Claiborne James B., Edwards Susan L., Morrison-Shetlar Alison I. Acid-base regulation in fishes: cellular and molecular mechanisms. J Exp Zool. 2002 Aug 1;293(3):302–319. doi: 10.1002/jez.10125. [DOI] [PubMed] [Google Scholar]
  3. Gagnon M. M., Holdway D. A. Metabolic enzyme activities in fish gills as biomarkers of exposure to petroleum hydrocarbons. Ecotoxicol Environ Saf. 1999 Sep;44(1):92–99. doi: 10.1006/eesa.1999.1804. [DOI] [PubMed] [Google Scholar]
  4. Garcia-Closas M., Hankinson S. E., Ho S., Malins D. C., Polissar N. L., Schaefer S. N., Su Y., Vinson M. A. Factors critical to the design and execution of epidemiologic studies and description of an innovative technology to follow the progression from normal to cancer tissue. J Natl Cancer Inst Monogr. 2000;(27):147–156. doi: 10.1093/oxfordjournals.jncimonographs.a024238. [DOI] [PubMed] [Google Scholar]
  5. Lichtenfels A. J., Lorenzi-Filho G., Guimarães E. T., Macchione M., Saldiva P. H. Effects of water pollution on the gill apparatus of fish. J Comp Pathol. 1996 Jul;115(1):47–60. doi: 10.1016/s0021-9975(96)80027-2. [DOI] [PubMed] [Google Scholar]
  6. Malins D. C., Polissar N. L., Garner M. M., Gunselman S. J. Mutagenic DNA base modifications are correlated with lesions in nonneoplastic hepatic tissue of the English sole carcinogenesis model. Cancer Res. 1996 Dec 15;56(24):5563–5565. [PubMed] [Google Scholar]
  7. Malins D. C., Polissar N. L., Gunselman S. J. Progression of human breast cancers to the metastatic state is linked to hydroxyl radical-induced DNA damage. Proc Natl Acad Sci U S A. 1996 Mar 19;93(6):2557–2563. doi: 10.1073/pnas.93.6.2557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Malins D. C., Polissar N. L., Ostrander G. K., Vinson M. A. Single 8-oxo-guanine and 8-oxo-adenine lesions induce marked changes in the backbone structure of a 25-base DNA strand. Proc Natl Acad Sci U S A. 2000 Nov 7;97(23):12442–12445. doi: 10.1073/pnas.230438797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Malins D. C., Polissar N. L., Su Y., Gardner H. S., Gunselman S. J. A new structural analysis of DNA using statistical models of infrared spectra. Nat Med. 1997 Aug;3(8):927–930. doi: 10.1038/nm0897-927. [DOI] [PubMed] [Google Scholar]
  10. Malins Donald C., Hellstrom Karl Erik, Anderson Katie M., Johnson Paul M., Vinson Mark A. Antioxidant-induced changes in oxidized DNA. Proc Natl Acad Sci U S A. 2002 Apr 23;99(9):5937–5941. doi: 10.1073/pnas.082111199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Malins Donald C., Johnson Paul M., Barker Edward A., Polissar Nayak L., Wheeler Thomas M., Anderson Katie M. Cancer-related changes in prostate DNA as men age and early identification of metastasis in primary prostate tumors. Proc Natl Acad Sci U S A. 2003 Apr 17;100(9):5401–5406. doi: 10.1073/pnas.0931396100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Miller K. A., Addison R. F., Bandiera S. M. Hepatic CYP1A levels and EROD activity in English sole: biomonitoring of marine contaminants in Vancouver Harbour. Mar Environ Res. 2004 Feb-Mar;57(1-2):37–54. doi: 10.1016/S0141-1136(03)00059-X. [DOI] [PubMed] [Google Scholar]
  13. Schlezinger J. J., Stegeman J. J. Induction and suppression of cytochrome P450 1A by 3,3',4,4',5-pentachlorobiphenyl and its relationship to oxidative stress in the marine fish scup (Stenotomus chrysops). Aquat Toxicol. 2001 Apr;52(2):101–115. doi: 10.1016/s0166-445x(00)00141-7. [DOI] [PubMed] [Google Scholar]
  14. Schlezinger J. J., White R. D., Stegeman J. J. Oxidative inactivation of cytochrome P-450 1A (CYP1A) stimulated by 3,3',4,4'-tetrachlorobiphenyl: production of reactive oxygen by vertebrate CYP1As. Mol Pharmacol. 1999 Sep;56(3):588–597. doi: 10.1124/mol.56.3.588. [DOI] [PubMed] [Google Scholar]
  15. Smolowitz R. M., Hahn M. E., Stegeman J. J. Immunohistochemical localization of cytochrome P-450IA1 induced by 3,3',4,4'-tetrachlorobiphenyl and by 2,3,7,8-tetrachlorodibenzoafuran in liver and extrahepatic tissues of the teleost Stenotomus chrysops (scup). Drug Metab Dispos. 1991 Jan-Feb;19(1):113–123. [PubMed] [Google Scholar]
  16. Spitsbergen J. M., Tsai H. W., Reddy A., Miller T., Arbogast D., Hendricks J. D., Bailey G. S. Neoplasia in zebrafish (Danio rerio) treated with 7,12-dimethylbenz[a]anthracene by two exposure routes at different developmental stages. Toxicol Pathol. 2000 Sep-Oct;28(5):705–715. doi: 10.1177/019262330002800511. [DOI] [PubMed] [Google Scholar]
  17. Stegeman J. J., Schlezinger J. J., Craddock J. E., Tillitt D. E. Cytochrome P450 1A expression in midwater fishes: potential effects of chemical contaminants in remote oceanic zones. Environ Sci Technol. 2001 Jan 1;35(1):54–62. doi: 10.1021/es0012265. [DOI] [PubMed] [Google Scholar]
  18. Stegeman J. J., Woodin B. R., Binder R. L. Patterns of benzo[a]pyrene metabolism by varied species, organs, and developmental stages of fish. Natl Cancer Inst Monogr. 1984 May;65:371–377. [PubMed] [Google Scholar]
  19. Taillandier E., Liquier J. Infrared spectroscopy of DNA. Methods Enzymol. 1992;211:307–335. doi: 10.1016/0076-6879(92)11018-e. [DOI] [PubMed] [Google Scholar]
  20. Van Veld P. A., Vogelbein W. K., Cochran M. K., Goksøyr A., Stegeman J. J. Route-specific cellular expression of cytochrome P4501A (CYP1A) in fish (Fundulus heteroclitus) following exposure to aqueous and dietary benzo[a]pyrene. Toxicol Appl Pharmacol. 1997 Feb;142(2):348–359. doi: 10.1006/taap.1996.8037. [DOI] [PubMed] [Google Scholar]
  21. White R. D., Shea D., Stegeman J. J. Metabolism of the aryl hydrocarbon receptor agonist 3,3',4,4'-tetrachlorobiphenyl by the marine fish scup (Stenotomus chrysops) in vivo and in vitro. Drug Metab Dispos. 1997 May;25(5):564–572. [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES