Abstract
We tested 200 pesticides, including some of their isomers and metabolites, for agonism and antagonism to two human estrogen receptor (hER) subtypes, hERalpha and hERbeta, and a human androgen receptor (hAR) by highly sensitive transactivation assays using Chinese hamster ovary cells. The test compounds were classified into nine groups: organochlorines, diphenyl ethers, organophosphorus pesticides, pyrethroids, carbamates, acid amides, triazines, ureas, and others. These pesticides were tested at concentrations < 10-5 M. Of the 200 pesticides tested, 47 and 33 showed hER- and hERbeta-mediated estrogenic activities, respectively. Among them, 29 pesticides had both hERalpha and hERbeta agonistic activities, and the effects of the organochlorine insecticides beta-benzene hexachloride (BHC) and delta-BHC and the carbamate insecticide methiocarb were predominantly hERbeta rather than hERalpha agonistic. Weak antagonistic effects toward hERalpha and hERbeta were shown in five and two pesticides, respectively. On the other hand, none of tested pesticides showed hAR-mediated androgenic activity, but 66 of 200 pesticides exhibited inhibitory activity against the transcriptional activity induced by 5alpha-dihydrotestosterone. In particular, the antiandrogenic activities of two diphenyl ether herbicides, chlornitrofen and chlomethoxyfen, were higher than those of vinclozolin and p,p -dichlorodiphenyl dichloroethylene, known AR antagonists. The results of our ER and AR assays show that 34 pesticides possessed both estrogenic and antiandrogenic activities, indicating pleiotropic effects on hER and hAR. We also discussed chemical structures related to these activities. Taken together, our findings suggest that a variety of pesticides have estrogenic and/or antiandrogenic potential via ER and/or AR, and that numerous other manmade chemicals may also possess such estrogenic and antiandrogenic activities.
Full Text
The Full Text of this article is available as a PDF (180.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Andersen Helle Raun, Vinggaard Anne Marie, Rasmussen Thomas Hoj, Gjermandsen Irene Marianne, Bonefeld-Jørgensen Eva Cecilie. Effects of currently used pesticides in assays for estrogenicity, androgenicity, and aromatase activity in vitro. Toxicol Appl Pharmacol. 2002 Feb 15;179(1):1–12. doi: 10.1006/taap.2001.9347. [DOI] [PubMed] [Google Scholar]
- Bauer E. R., Meyer H. H., Stahlschmidt-Allner P., Sauerwein H. Application of an androgen receptor assay for the characterisation of the androgenic or antiandrogenic activity of various phenylurea herbicides and their derivatives. Analyst. 1998 Dec;123(12):2485–2487. doi: 10.1039/a804606i. [DOI] [PubMed] [Google Scholar]
- Blair R. M., Fang H., Branham W. S., Hass B. S., Dial S. L., Moland C. L., Tong W., Shi L., Perkins R., Sheehan D. M. The estrogen receptor relative binding affinities of 188 natural and xenochemicals: structural diversity of ligands. Toxicol Sci. 2000 Mar;54(1):138–153. doi: 10.1093/toxsci/54.1.138. [DOI] [PubMed] [Google Scholar]
- Bulger W. H., Muccitelli R. M., Kupfer D. Studies on the in vivo and in vitro estrogenic activities of methoxychlor and its metabolites. Role of hepatic mono-oxygenase in methoxychlor activation. Biochem Pharmacol. 1978;27(20):2417–2423. doi: 10.1016/0006-2952(78)90354-4. [DOI] [PubMed] [Google Scholar]
- Chatterjee S., Ray A., Bagchi P., Deb C. Estrogenic effects of aldrin and quinalphos in rats. Bull Environ Contam Toxicol. 1992 Jan;48(1):125–130. doi: 10.1007/BF00197494. [DOI] [PubMed] [Google Scholar]
- Chen Haiyan, Xiao Jigao, Hu Gang, Zhou Jianwei, Xiao Hang, Wang Xinru. Estrogenicity of organophosphorus and pyrethroid pesticides. J Toxicol Environ Health A. 2002 Oct 11;65(19):1419–1435. doi: 10.1080/00984100290071243. [DOI] [PubMed] [Google Scholar]
- Colborn T. Environmental estrogens: health implications for humans and wildlife. Environ Health Perspect. 1995 Oct;103 (Suppl 7):135–136. doi: 10.1289/ehp.95103s7135. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Colborn T., vom Saal F. S., Soto A. M. Developmental effects of endocrine-disrupting chemicals in wildlife and humans. Environ Health Perspect. 1993 Oct;101(5):378–384. doi: 10.1289/ehp.93101378. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Coosen R., van Velsen F. L. Effects of the beta-isomer of hexachlorocyclohexane on estrogen-sensitive human mammary tumor cells. Toxicol Appl Pharmacol. 1989 Nov;101(2):310–318. doi: 10.1016/0041-008x(89)90279-2. [DOI] [PubMed] [Google Scholar]
- Cummings A. M. Methoxychlor as a model for environmental estrogens. Crit Rev Toxicol. 1997 Jul;27(4):367–379. doi: 10.3109/10408449709089899. [DOI] [PubMed] [Google Scholar]
- Dejonckheere W., Steurbaut W., Verstraeten R., Kips R. H. Residues of organochlorine pesticides in human fat in Belgium. Toxicol Eur Res. 1978 Mar;1(2):93–98. [PubMed] [Google Scholar]
- Friedmann Andrew S. Atrazine inhibition of testosterone production in rat males following peripubertal exposure. Reprod Toxicol. 2002 May-Jun;16(3):275–279. doi: 10.1016/s0890-6238(02)00019-9. [DOI] [PubMed] [Google Scholar]
- Garey J., Wolff M. S. Estrogenic and antiprogestagenic activities of pyrethroid insecticides. Biochem Biophys Res Commun. 1998 Oct 29;251(3):855–859. doi: 10.1006/bbrc.1998.9569. [DOI] [PubMed] [Google Scholar]
- Go V., Garey J., Wolff M. S., Pogo B. G. Estrogenic potential of certain pyrethroid compounds in the MCF-7 human breast carcinoma cell line. Environ Health Perspect. 1999 Mar;107(3):173–177. doi: 10.1289/ehp.99107173. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hayes Tyrone B., Collins Atif, Lee Melissa, Mendoza Magdelena, Noriega Nigel, Stuart A. Ali, Vonk Aaron. Hermaphroditic, demasculinized frogs after exposure to the herbicide atrazine at low ecologically relevant doses. Proc Natl Acad Sci U S A. 2002 Apr 16;99(8):5476–5480. doi: 10.1073/pnas.082121499. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jensen T. K., Toppari J., Keiding N., Skakkebaek N. E. Do environmental estrogens contribute to the decline in male reproductive health? Clin Chem. 1995 Dec;41(12 Pt 2):1896–1901. [PubMed] [Google Scholar]
- Kelce W. R., Monosson E., Gamcsik M. P., Laws S. C., Gray L. E., Jr Environmental hormone disruptors: evidence that vinclozolin developmental toxicity is mediated by antiandrogenic metabolites. Toxicol Appl Pharmacol. 1994 Jun;126(2):276–285. doi: 10.1006/taap.1994.1117. [DOI] [PubMed] [Google Scholar]
- Kelce W. R., Stone C. R., Laws S. C., Gray L. E., Kemppainen J. A., Wilson E. M. Persistent DDT metabolite p,p'-DDE is a potent androgen receptor antagonist. Nature. 1995 Jun 15;375(6532):581–585. doi: 10.1038/375581a0. [DOI] [PubMed] [Google Scholar]
- Klotz D. M., Arnold S. F., McLachlan J. A. Inhibition of 17 beta-estradiol and progesterone activity in human breast and endometrial cancer cells by carbamate insecticides. Life Sci. 1997;60(17):1467–1475. doi: 10.1016/s0024-3205(97)00098-2. [DOI] [PubMed] [Google Scholar]
- Kojima Hiroyuki, Iida Mitsuru, Katsura Eiji, Kanetoshi Akio, Hori Yoshihiro, Kobayashi Kunihiko. Effects of a diphenyl ether-type herbicide, chlornitrofen, and its amino derivative on androgen and estrogen receptor activities. Environ Health Perspect. 2003 Apr;111(4):497–502. doi: 10.1289/ehp.5724. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kuiper G. G., Carlsson B., Grandien K., Enmark E., Häggblad J., Nilsson S., Gustafsson J. A. Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors alpha and beta. Endocrinology. 1997 Mar;138(3):863–870. doi: 10.1210/endo.138.3.4979. [DOI] [PubMed] [Google Scholar]
- Kuiper G. G., Enmark E., Pelto-Huikko M., Nilsson S., Gustafsson J. A. Cloning of a novel receptor expressed in rat prostate and ovary. Proc Natl Acad Sci U S A. 1996 Jun 11;93(12):5925–5930. doi: 10.1073/pnas.93.12.5925. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kutz F. W., Wood P. H., Bottimore D. P. Organochlorine pesticides and polychlorinated biphenyls in human adipose tissue. Rev Environ Contam Toxicol. 1991;120:1–82. doi: 10.1007/978-1-4612-3080-9_1. [DOI] [PubMed] [Google Scholar]
- Lambright C., Ostby J., Bobseine K., Wilson V., Hotchkiss A. K., Mann P. C., Gray L. E., Jr Cellular and molecular mechanisms of action of linuron: an antiandrogenic herbicide that produces reproductive malformations in male rats. Toxicol Sci. 2000 Aug;56(2):389–399. doi: 10.1093/toxsci/56.2.389. [DOI] [PubMed] [Google Scholar]
- Maness S. C., McDonnell D. P., Gaido K. W. Inhibition of androgen receptor-dependent transcriptional activity by DDT isomers and methoxychlor in HepG2 human hepatoma cells. Toxicol Appl Pharmacol. 1998 Jul;151(1):135–142. doi: 10.1006/taap.1998.8431. [DOI] [PubMed] [Google Scholar]
- McInerney E. M., Weis K. E., Sun J., Mosselman S., Katzenellenbogen B. S. Transcription activation by the human estrogen receptor subtype beta (ER beta) studied with ER beta and ER alpha receptor chimeras. Endocrinology. 1998 Nov;139(11):4513–4522. doi: 10.1210/endo.139.11.6298. [DOI] [PubMed] [Google Scholar]
- Ostby J., Kelce W. R., Lambright C., Wolf C. J., Mann P., Gray L. E., Jr The fungicide procymidone alters sexual differentiation in the male rat by acting as an androgen-receptor antagonist in vivo and in vitro. Toxicol Ind Health. 1999 Jan-Mar;15(1-2):80–93. doi: 10.1177/074823379901500108. [DOI] [PubMed] [Google Scholar]
- Saito K., Tomigahara Y., Ohe N., Isobe N., Nakatsuka I., Kaneko H. Lack of significant estrogenic or antiestrogenic activity of pyrethroid insecticides in three in vitro assays based on classic estrogen receptor alpha-mediated mechanisms. Toxicol Sci. 2000 Sep;57(1):54–60. doi: 10.1093/toxsci/57.1.54. [DOI] [PubMed] [Google Scholar]
- Simonich S. L., Hites R. A. Global distribution of persistent organochlorine compounds. Science. 1995 Sep 29;269(5232):1851–1854. doi: 10.1126/science.7569923. [DOI] [PubMed] [Google Scholar]
- Sohoni P., Lefevre P. A., Ashby J., Sumpter J. P. Possible androgenic/anti-androgenic activity of the insecticide fenitrothion. J Appl Toxicol. 2001 May-Jun;21(3):173–178. doi: 10.1002/jat.747. [DOI] [PubMed] [Google Scholar]
- Sohoni P., Sumpter J. P. Several environmental oestrogens are also anti-androgens. J Endocrinol. 1998 Sep;158(3):327–339. doi: 10.1677/joe.0.1580327. [DOI] [PubMed] [Google Scholar]
- Sonnenschein C., Soto A. M. An updated review of environmental estrogen and androgen mimics and antagonists. J Steroid Biochem Mol Biol. 1998 Apr;65(1-6):143–150. doi: 10.1016/s0960-0760(98)00027-2. [DOI] [PubMed] [Google Scholar]
- Soto A. M., Sonnenschein C., Chung K. L., Fernandez M. F., Olea N., Serrano F. O. The E-SCREEN assay as a tool to identify estrogens: an update on estrogenic environmental pollutants. Environ Health Perspect. 1995 Oct;103 (Suppl 7):113–122. doi: 10.1289/ehp.95103s7113. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tamura H., Maness S. C., Reischmann K., Dorman D. C., Gray L. E., Gaido K. W. Androgen receptor antagonism by the organophosphate insecticide fenitrothion. Toxicol Sci. 2001 Mar;60(1):56–62. doi: 10.1093/toxsci/60.1.56. [DOI] [PubMed] [Google Scholar]
- Tomura A., Goto K., Morinaga H., Nomura M., Okabe T., Yanase T., Takayanagi R., Nawata H. The subnuclear three-dimensional image analysis of androgen receptor fused to green fluorescence protein. J Biol Chem. 2001 May 21;276(30):28395–28401. doi: 10.1074/jbc.M101755200. [DOI] [PubMed] [Google Scholar]
- Tran D. Q., Kow K. Y., McLachlan J. A., Arnold S. F. The inhibition of estrogen receptor-mediated responses by chloro-S-triazine-derived compounds is dependent on estradiol concentration in yeast. Biochem Biophys Res Commun. 1996 Oct 3;227(1):140–146. doi: 10.1006/bbrc.1996.1480. [DOI] [PubMed] [Google Scholar]
- Vinggaard A. M., Joergensen E. C., Larsen J. C. Rapid and sensitive reporter gene assays for detection of antiandrogenic and estrogenic effects of environmental chemicals. Toxicol Appl Pharmacol. 1999 Mar 1;155(2):150–160. doi: 10.1006/taap.1998.8598. [DOI] [PubMed] [Google Scholar]
- Vinggaard Anne Marie, Nellemann Christine, Dalgaard Majken, Jørgensen Eva Bonefeld, Andersen Helle Raun. Antiandrogenic effects in vitro and in vivo of the fungicide prochloraz. Toxicol Sci. 2002 Oct;69(2):344–353. doi: 10.1093/toxsci/69.2.344. [DOI] [PubMed] [Google Scholar]
- Vonier P. M., Crain D. A., McLachlan J. A., Guillette L. J., Jr, Arnold S. F. Interaction of environmental chemicals with the estrogen and progesterone receptors from the oviduct of the American alligator. Environ Health Perspect. 1996 Dec;104(12):1318–1322. doi: 10.1289/ehp.961041318. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Welch R. M., Levin W., Conney A. H. Estrogenic action of DDT and its analogs. Toxicol Appl Pharmacol. 1969 Mar;14(2):358–367. doi: 10.1016/0041-008x(69)90117-3. [DOI] [PubMed] [Google Scholar]
- Wolf C., Jr, Lambright C., Mann P., Price M., Cooper R. L., Ostby J., Gray L. E., Jr Administration of potentially antiandrogenic pesticides (procymidone, linuron, iprodione, chlozolinate, p,p'-DDE, and ketoconazole) and toxic substances (dibutyl- and diethylhexyl phthalate, PCB 169, and ethane dimethane sulphonate) during sexual differentiation produces diverse profiles of reproductive malformations in the male rat. Toxicol Ind Health. 1999 Jan-Mar;15(1-2):94–118. doi: 10.1177/074823379901500109. [DOI] [PubMed] [Google Scholar]