Abstract
Although para-nonylphenol (NP) is known as an endocrine disruptor, the immunologic effect of NP has been poorly analyzed. We found that NP from 5 to 50 microM caused a dose-dependent stimulatory effect on the generation of reactive oxygen species (ROS) in human blood neutrophils, which was measured by using a chemiluminescence reagent, luminol. Furthermore, ROS-scavenging enzymes such as catalase and superoxide dismutase and antioxidative agents alpha-tocopherol and beta-carotene showed strong preventive effects on NP-induced ROS generation. To analyze the biochemical mechanism of NP-induced ROS generation in human neutrophils, we investigated the effects of different types of metabolic inhibitor for the activation pathways of ROS generation in the cells. Reduced nicotinamide adenine dinucleotide phosphate (NADPH)-dependent oxidase inhibitor, diphenyl iodonium chloride and the myeloperoxidase inhibitor sodium azide (NaN3) showed remarkable inhibitory effects on ROS generation induced by NP, but an inhibitor against mitochondrial respiratory function, potassium cyanide (KCN), did not exhibit significant effect. Furthermore, the phosphatidylinositol-3 (PI3) kinase inhibitor wortmannin and the tyrosine kinase inhibitor protein phosphorylation inhibitor 1 (PP1) caused strong suppression against NP-induced ROS generation. The selective protein kinase C inhibitor Ro-32-0432, p38 MAP kinase inhibitor SB 203580, and ERK MAP kinase inhibitor PD 98059 also showed significant suppressive effects on NP-induced ROS generation. These results suggest that NP causes an enhancing effect on ROS generation in human blood neutrophils through the activation of signal transduction pathways associated with the respiratory burst function in these cells. Additionally, to examine in vivo effects of NP, we also analyzed the effects of NP itself and the synergistic effects of NP and a typical inflammatory agent, opsonized zymosan, on human whole blood including neutrophils.
Full Text
The Full Text of this article is available as a PDF (122.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ahel M., McEvoy J., Giger W. Bioaccumulation of the lipophilic metabolites of nonionic surfactants in freshwater organisms. Environ Pollut. 1993;79(3):243–248. doi: 10.1016/0269-7491(93)90096-7. [DOI] [PubMed] [Google Scholar]
- Cross A. R., Jones O. T. The effect of the inhibitor diphenylene iodonium on the superoxide-generating system of neutrophils. Specific labelling of a component polypeptide of the oxidase. Biochem J. 1986 Jul 1;237(1):111–116. doi: 10.1042/bj2370111. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Downey G. P., Butler J. R., Tapper H., Fialkow L., Saltiel A. R., Rubin B. B., Grinstein S. Importance of MEK in neutrophil microbicidal responsiveness. J Immunol. 1998 Jan 1;160(1):434–443. [PubMed] [Google Scholar]
- Dudley D. T., Pang L., Decker S. J., Bridges A. J., Saltiel A. R. A synthetic inhibitor of the mitogen-activated protein kinase cascade. Proc Natl Acad Sci U S A. 1995 Aug 15;92(17):7686–7689. doi: 10.1073/pnas.92.17.7686. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ekelund R., Granmo A., Magnusson K., Berggren M., Bergman A. Biodegradation of 4-nonylphenol in seawater and sediment. Environ Pollut. 1993;79(1):59–61. doi: 10.1016/0269-7491(93)90178-q. [DOI] [PubMed] [Google Scholar]
- Giger W., Brunner P. H., Schaffner C. 4-Nonylphenol in sewage sludge: accumulation of toxic metabolites from nonionic surfactants. Science. 1984 Aug 10;225(4662):623–625. doi: 10.1126/science.6740328. [DOI] [PubMed] [Google Scholar]
- Imada I., Sato E. F., Miyamoto M., Ichimori Y., Minamiyama Y., Konaka R., Inoue M. Analysis of reactive oxygen species generated by neutrophils using a chemiluminescence probe L-012. Anal Biochem. 1999 Jun 15;271(1):53–58. doi: 10.1006/abio.1999.4107. [DOI] [PubMed] [Google Scholar]
- Imlay J. A., Linn S. DNA damage and oxygen radical toxicity. Science. 1988 Jun 3;240(4857):1302–1309. doi: 10.1126/science.3287616. [DOI] [PubMed] [Google Scholar]
- Kikuchi K., Nagano T., Hayakawa H., Hirata Y., Hirobe M. Detection of nitric oxide production from a perfused organ by a luminol-H2O2 system. Anal Chem. 1993 Jul 1;65(13):1794–1799. doi: 10.1021/ac00061a025. [DOI] [PubMed] [Google Scholar]
- Lee P. C., Lee W. In vivo estrogenic action of nonylphenol in immature female rats. Bull Environ Contam Toxicol. 1996 Sep;57(3):341–348. doi: 10.1007/s001289900196. [DOI] [PubMed] [Google Scholar]
- Mertz W. Food fortification in the United States. Nutr Rev. 1997 Feb;55(2):44–49. doi: 10.1111/j.1753-4887.1997.tb01594.x. [DOI] [PubMed] [Google Scholar]
- Nagao T., Saito Y., Usumi K., Nakagomi M., Yoshimura S., Ono H. Disruption of the reproductive system and reproductive performance by administration of nonylphenol to newborn rats. Hum Exp Toxicol. 2000 May;19(5):284–296. doi: 10.1191/096032700678815909. [DOI] [PubMed] [Google Scholar]
- Nimrod A. C., Benson W. H. Environmental estrogenic effects of alkylphenol ethoxylates. Crit Rev Toxicol. 1996 May;26(3):335–364. doi: 10.3109/10408449609012527. [DOI] [PubMed] [Google Scholar]
- Núez-Delicado E., Sánchez-Ferrer A., García-Carmona F. Hydroperoxidative oxidation of diethylstilbestrol by lipoxygenase. Arch Biochem Biophys. 1997 Dec 15;348(2):411–414. doi: 10.1006/abbi.1997.0386. [DOI] [PubMed] [Google Scholar]
- Obata T., Kubota S. Formation of hydroxy radicals by environmental estrogen-like chemicals in rat striatum. Neurosci Lett. 2000 Dec 15;296(1):41–44. doi: 10.1016/s0304-3940(00)01619-0. [DOI] [PubMed] [Google Scholar]
- Okai Y., Higashi-Okai K., Machida K., Nakamura H., Nakayama K., Fujita K., Tanaka T., Otani S., Taniguchi M. Protective effect of antioxidants against para-nonylphenol-induced inhibition of cell growth in Saccharomyces cerevisiae. FEMS Microbiol Lett. 2000 Apr 1;185(1):65–70. doi: 10.1111/j.1574-6968.2000.tb09041.x. [DOI] [PubMed] [Google Scholar]
- Roy D., Liehr J. G. Target organ-specific inactivation of drug metabolizing enzymes in kidney of hamsters treated with estradiol. Mol Cell Biochem. 1992 Mar 4;110(1):31–39. doi: 10.1007/BF02385003. [DOI] [PubMed] [Google Scholar]
- Sha'afi R. I., Molski T. F. Activation of the neutrophil. Prog Allergy. 1988;42:1–64. doi: 10.1159/000318681. [DOI] [PubMed] [Google Scholar]
- Soto A. M., Justicia H., Wray J. W., Sonnenschein C. p-Nonyl-phenol: an estrogenic xenobiotic released from "modified" polystyrene. Environ Health Perspect. 1991 May;92:167–173. doi: 10.1289/ehp.9192167. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sue-A-Quan A. K., Fialkow L., Vlahos C. J., Schelm J. A., Grinstein S., Butler J., Downey G. P. Inhibition of neutrophil oxidative burst and granule secretion by wortmannin: potential role of MAP kinase and renaturable kinases. J Cell Physiol. 1997 Jul;172(1):94–108. doi: 10.1002/(SICI)1097-4652(199707)172:1<94::AID-JCP11>3.0.CO;2-O. [DOI] [PubMed] [Google Scholar]
- Torres M., Hall F. L., O'Neill K. Stimulation of human neutrophils with formyl-methionyl-leucyl-phenylalanine induces tyrosine phosphorylation and activation of two distinct mitogen-activated protein-kinases. J Immunol. 1993 Feb 15;150(4):1563–1577. [PubMed] [Google Scholar]
- Weiss S. J. Tissue destruction by neutrophils. N Engl J Med. 1989 Feb 9;320(6):365–376. doi: 10.1056/NEJM198902093200606. [DOI] [PubMed] [Google Scholar]
- Wilkinson S. E., Parker P. J., Nixon J. S. Isoenzyme specificity of bisindolylmaleimides, selective inhibitors of protein kinase C. Biochem J. 1993 Sep 1;294(Pt 2):335–337. doi: 10.1042/bj2940335. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wrogemann K., Weidemann M. J., Peskar B. A., Staudinger H., Rietschel E. T., Fischer H. Chemiluminescence and immune cell activation. I. Early activation of rat thymocytes can be monitored by chemiluminescence measurements. Eur J Immunol. 1978 Oct;8(10):749–752. doi: 10.1002/eji.1830081014. [DOI] [PubMed] [Google Scholar]
- Yamashita Uki, Sugiura Tsutomu, Kuroda Etsushi. Effect of endocrine disrupters on immune responses in vitro. J UOEH. 2002 Mar 1;24(1):1–10. doi: 10.7888/juoeh.24.1. [DOI] [PubMed] [Google Scholar]