Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2004 Apr;112(5):562–570. doi: 10.1289/ehp.6587

Blood organic mercury and dietary mercury intake: National Health and Nutrition Examination Survey, 1999 and 2000.

Kathryn R Mahaffey 1, Robert P Clickner 1, Catherine C Bodurow 1
PMCID: PMC1241922  PMID: 15064162

Abstract

Blood organic mercury (i.e., methyl mercury) concentrations among 1,709 women who were participants in the National Health and Nutrition Examination Survey (NHANES) in 1999 and 2000 (1999-2000 NHANES) were 0.6 microg/L at the 50th percentile and ranged from concentrations that were nondetectable (5th percentile) to 6.7 microg/L (95th percentile). Blood organic/methyl mercury reflects methyl mercury intake from fish and shellfish as determined from a methyl mercury exposure parameter based on 24-hr dietary recall, 30-day food frequency, and mean concentrations of mercury in the fish/shellfish species reported as consumed (multiple correlation coefficient > 0.5). Blood organic/methyl mercury concentrations were lowest among Mexican Americans and highest among participants who designated themselves in the Other racial/ethnic category, which includes Asians, Native Americans, and Pacific Islanders. Blood organic/methyl mercury concentrations were ~1.5 times higher among women 30-49 years of age than among women 16-29 years of age. Blood mercury (BHg) concentrations were seven times higher among women who reported eating nine or more fish and/or shellfish meals within the past 30 days than among women who reported no fish and/or shellfish consumption in the past 30 days. Blood organic/methyl mercury concentrations greater than or equal to 5.8 microg/L were lowest among Mexican Americans (2.0%) and highest among examinees in the Other racial/ethnic category (21.7%). Based on the distribution of BHg concentrations among the adult female participants in 1999-2000 NHANES and the number of U.S. births in 2000, > 300,000 newborns each year in the United States may have been exposed in utero to methyl mercury concentrations higher than those considered to be without increased risk of adverse neurodevelopmental effects associated with methyl mercury exposure.

Full Text

The Full Text of this article is available as a PDF (177.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balluz L. S., Philen R. M., Sewell C. M., Voorhees R. E., Falter K. H., Paschal D. Mercury toxicity associated with a beauty lotion, New Mexico. Int J Epidemiol. 1997 Oct;26(5):1131–1132. doi: 10.1093/ije/26.5.1131. [DOI] [PubMed] [Google Scholar]
  2. Becker Kerstin, Kaus Susanne, Krause Christian, Lepom Peter, Schulz Christine, Seiwert Margarete, Seifert Bernd. German Environmental Survey 1998 (GerES III): environmental pollutants in blood of the German population. Int J Hyg Environ Health. 2002 May;205(4):297–308. doi: 10.1078/1438-4639-00155. [DOI] [PubMed] [Google Scholar]
  3. Birke G., Johnels A. G., Plantin L. O., Sjöstrand B., Skerfving S., Westermark T. Studies on humans exposed to methyl mercury through fish consumption. Arch Environ Health. 1972 Aug;25(2):77–91. doi: 10.1080/00039896.1972.10666141. [DOI] [PubMed] [Google Scholar]
  4. Björnberg K. Ask, Vahter M., Petersson-Grawé K., Glynn A., Cnattingius S., Darnerud P. O., Atuma S., Aune M., Becker W., Berglund M. Methyl mercury and inorganic mercury in Swedish pregnant women and in cord blood: influence of fish consumption. Environ Health Perspect. 2003 Apr;111(4):637–641. doi: 10.1289/ehp.111-1241457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Burge P., Evans S. Mercury contamination in Arkansas gamefish. A public health perspective. J Ark Med Soc. 1994 Apr;90(11):542–544. [PubMed] [Google Scholar]
  6. Centers for Disease Control and Prevention (CDC) Summary of the joint statement on thimerosal in vaccines. American Academy of Family Physicians, American Academy of Pediatrics, Advisory Committee on Immunization Practices, Public Health Service. MMWR Morb Mortal Wkly Rep. 2000 Jul 14;49(27):622–631. [PubMed] [Google Scholar]
  7. Chicourel E. L., Sakuma A. M., Zenebon O., Tenuta-Filho A. Inefficacy of cooking methods on mercury reduction from shark. Arch Latinoam Nutr. 2001 Sep;51(3):288–292. [PubMed] [Google Scholar]
  8. Falter R., Schöler H. F. Determination of methyl-, ethyl-, phenyl and total mercury in Neckar River fish. Chemosphere. 1994 Sep;29(6):1333–1338. doi: 10.1016/0045-6535(94)90263-1. [DOI] [PubMed] [Google Scholar]
  9. Gabrio T., Benedikt G., Broser S., Felder-Kennel A., Fichtner G., Horras-Hun G., Jovanovic S., Kirsch H., Kouros B., Link B. 10 Jahre Beobachtungsgesundheitsämter in Baden-Württemberg--Beurteilung der Human-Biomonitoring-Untersuchungen bezüglich der Quecksilber-Belastung durch Amalgamfüllungen und andere Quellen. Gesundheitswesen. 2003 May;65(5):327–335. doi: 10.1055/s-2003-39541. [DOI] [PubMed] [Google Scholar]
  10. Gilmour C. C., Riedel G. S. A survey of size-specific mercury concentrations in game fish from Maryland fresh and estuarine waters. Arch Environ Contam Toxicol. 2000 Jul;39(1):53–59. doi: 10.1007/s002440010079. [DOI] [PubMed] [Google Scholar]
  11. Gunderson E. L. FDA Total Diet Study, July 1986-April 1991, dietary intakes of pesticides, selected elements, and other chemicals. J AOAC Int. 1995 Nov-Dec;78(6):1353–1363. [PubMed] [Google Scholar]
  12. Halbach S., Welzl G., Kremers L., Willruth H., Mehl A., Wack F. X., Hickel R., Greim H. Steady-state transfer and depletion kinetics of mercury from amalgam fillings. Sci Total Environ. 2000 Oct 2;259(1-3):13–21. doi: 10.1016/s0048-9697(00)00545-3. [DOI] [PubMed] [Google Scholar]
  13. Haxton J., Lindsay D. G., Hislop J. S., Salmon L., Dixon E. J., Evans W. H., Reid J. R., Hewitt C. J., Jeffries D. F. Duplicate diet study on fishing communities in the United Kingdom: mercury exposure in a "critical group". Environ Res. 1979 Apr;18(2):351–368. doi: 10.1016/0013-9351(79)90112-9. [DOI] [PubMed] [Google Scholar]
  14. Hightower Jane M., Moore Dan. Mercury levels in high-end consumers of fish. Environ Health Perspect. 2003 Apr;111(4):604–608. doi: 10.1289/ehp.5837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ikarashi A., Sasaki K., Toyoda M., Saito Y. [Annual daily intakes of Hg, PCB and arsenic from fish and shellfish and comparative survey of their residue levels in fish by body weight]. Eisei Shikenjo Hokoku. 1996;(114):43–47. [PubMed] [Google Scholar]
  16. Jedrzejczak R. Determination of total mercury in foods of plant origin in Poland by cold vapour atomic absorption spectrometry. Food Addit Contam. 2002 Oct;19(10):996–1002. doi: 10.1080/02652030210151912. [DOI] [PubMed] [Google Scholar]
  17. Jewett Stephen C., Zhang Xiaoming, Naidu A. Sathy, Kelley John J., Dasher Doug, Duffy Lawrence K. Comparison of mercury and methylmercury in northern pike and Arctic grayling from western Alaska rivers. Chemosphere. 2003 Jan;50(3):383–392. doi: 10.1016/s0045-6535(02)00421-6. [DOI] [PubMed] [Google Scholar]
  18. Kannan K., Smith R. G., Jr, Lee R. F., Windom H. L., Heitmuller P. T., Macauley J. M., Summers J. K. Distribution of total mercury and methyl mercury in water, sediment, and fish from south Florida estuaries. Arch Environ Contam Toxicol. 1998 Feb;34(2):109–118. doi: 10.1007/s002449900294. [DOI] [PubMed] [Google Scholar]
  19. Karvetti R. L., Knuts L. R. Validity of the 24-hour dietary recall. J Am Diet Assoc. 1985 Nov;85(11):1437–1442. [PubMed] [Google Scholar]
  20. Kershaw T. G., Clarkson T. W., Dhahir P. H. The relationship between blood levels and dose of methylmercury in man. Arch Environ Health. 1980 Jan-Feb;35(1):28–36. doi: 10.1080/00039896.1980.10667458. [DOI] [PubMed] [Google Scholar]
  21. Kingman A., Albertini T., Brown L. J. Mercury concentrations in urine and whole blood associated with amalgam exposure in a US military population. J Dent Res. 1998 Mar;77(3):461–471. doi: 10.1177/00220345980770030501. [DOI] [PubMed] [Google Scholar]
  22. Knobeloch L. M., Ziarnik M., Anderson H. A., Dodson V. N. Imported seabass as a source of mercury exposure: a Wisconsin case study. Environ Health Perspect. 1995 Jun;103(6):604–606. doi: 10.1289/ehp.95103604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Larsen E. H., Andersen N. L., Møller A., Petersen A., Mortensen G. K., Petersen J. Monitoring the content and intake of trace elements from food in Denmark. Food Addit Contam. 2002 Jan;19(1):33–46. doi: 10.1080/02652030110087447. [DOI] [PubMed] [Google Scholar]
  24. MacIntosh D. L., Spengler J. D., Ozkaynak H., Tsai L., Ryan P. B. Dietary exposures to selected metals and pesticides. Environ Health Perspect. 1996 Feb;104(2):202–209. doi: 10.1289/ehp.96104202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Mason H. J., Hindell P., Williams N. R. Biological monitoring and exposure to mercury. Occup Med (Lond) 2001 Feb;51(1):2–11. doi: 10.1093/occmed/51.1.2. [DOI] [PubMed] [Google Scholar]
  26. Morgan J. N., Berry M. R., Graves R. L. Effects of commonly used cooking practices on total mercury concentration in fish and their impact on exposure assessments. J Expo Anal Environ Epidemiol. 1997 Jan-Mar;7(1):119–133. [PubMed] [Google Scholar]
  27. Nakagawa R., Yumita Y., Hiromoto M. Total mercury intake from fish and shellfish by Japanese people. Chemosphere. 1997 Dec;35(12):2909–2913. doi: 10.1016/s0045-6535(97)00351-2. [DOI] [PubMed] [Google Scholar]
  28. Nierenberg D. W., Nordgren R. E., Chang M. B., Siegler R. W., Blayney M. B., Hochberg F., Toribara T. Y., Cernichiari E., Clarkson T. Delayed cerebellar disease and death after accidental exposure to dimethylmercury. N Engl J Med. 1998 Jun 4;338(23):1672–1676. doi: 10.1056/NEJM199806043382305. [DOI] [PubMed] [Google Scholar]
  29. Penedo de Pinho Alexandra, Davée Guimarães Jean Remy, Martins Agnaldo S., Costa P. A. S., Olavo G., Valentin Jean. Total mercury in muscle tissue of five shark species from Brazilian offshore waters: effects of feeding habit, sex, and length. Environ Res. 2002 Jul;89(3):250–258. doi: 10.1006/enrs.2002.4365. [DOI] [PubMed] [Google Scholar]
  30. Rice Deborah C., Schoeny Rita, Mahaffey Kate. Methods and rationale for derivation of a reference dose for methylmercury by the U.S. EPA. Risk Anal. 2003 Feb;23(1):107–115. doi: 10.1111/1539-6924.00294. [DOI] [PubMed] [Google Scholar]
  31. Riley D. M., Newby C. A., Leal-Almeraz T. O., Thomas V. M. Assessing elemental mercury vapor exposure from cultural and religious practices. Environ Health Perspect. 2001 Aug;109(8):779–784. doi: 10.1289/ehp.01109779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Sanzo J. M., Dorronsoro M., Amiano P., Amurrio A., Aguinagalde F. X., Azpiri M. A., EPIC Group of Spain [European Prospective Investigation into Cancer and Nutrition] Estimation and validation of mercury intake associated with fish consumption in an EPIC cohort of Spain. Public Health Nutr. 2001 Oct;4(5):981–988. doi: 10.1079/phn2001170. [DOI] [PubMed] [Google Scholar]
  33. Schober Susan E., Sinks Thomas H., Jones Robert L., Bolger P. Michael, McDowell Margaret, Osterloh John, Garrett E. Spencer, Canady Richard A., Dillon Charles F., Sun Yu. Blood mercury levels in US children and women of childbearing age, 1999-2000. JAMA. 2003 Apr 2;289(13):1667–1674. doi: 10.1001/jama.289.13.1667. [DOI] [PubMed] [Google Scholar]
  34. Schultz C. D., Crear D., Pearson J. E., Rivers J. E., Hylin J. W. Total and organic mercury in the Pacific blue marlin. Bull Environ Contam Toxicol. 1976 Feb;15(2):230–234. doi: 10.1007/BF01685166. [DOI] [PubMed] [Google Scholar]
  35. Sherlock J. C., Lindsay D. G., Hislop J. E., Evans W. H., Collier T. R. Duplication diet study on mercury intake by fish consumers in the United Kingdom. Arch Environ Health. 1982 Sep-Oct;37(5):271–278. doi: 10.1080/00039896.1982.10667578. [DOI] [PubMed] [Google Scholar]
  36. Sherlock J., Hislop J., Newton D., Topping G., Whittle K. Elevation of mercury in human blood from controlled chronic ingestion of methylmercury in fish. Hum Toxicol. 1984 Apr;3(2):117–131. doi: 10.1177/096032718400300205. [DOI] [PubMed] [Google Scholar]
  37. Skerfving S. Methylmercury exposure, mercury levels in blood and hair, and health status in Swedes consuming contaminated fish. Toxicology. 1974 Mar;2(1):3–23. doi: 10.1016/0300-483x(74)90038-9. [DOI] [PubMed] [Google Scholar]
  38. Stern Alan H., Smith Andrew E. An assessment of the cord blood:maternal blood methylmercury ratio: implications for risk assessment. Environ Health Perspect. 2003 Sep;111(12):1465–1470. doi: 10.1289/ehp.6187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Storelli M. M., Marcotrigiano G. O. Fish for human consumption: risk of contamination by mercury. Food Addit Contam. 2000 Dec;17(12):1007–1011. doi: 10.1080/02652030050207792. [DOI] [PubMed] [Google Scholar]
  40. Storelli M. M., Stuffler R. Giacominelli, Marcotrigiano G. O. Total and methylmercury residues in tuna-fish from the Mediterranean sea. Food Addit Contam. 2002 Aug;19(8):715–720. doi: 10.1080/02652030210153569. [DOI] [PubMed] [Google Scholar]
  41. Svensson B. G., Schütz A., Nilsson A., Akesson I., Akesson B., Skerfving S. Fish as a source of exposure to mercury and selenium. Sci Total Environ. 1992 Sep 11;126(1-2):61–74. doi: 10.1016/0048-9697(92)90484-a. [DOI] [PubMed] [Google Scholar]
  42. Urieta I., Jalón M., Eguilero I. Food surveillance in the Basque Country (Spain). II. Estimation of the dietary intake of organochlorine pesticides, heavy metals, arsenic, aflatoxin M1, iron and zinc through the Total Diet Study, 1990/91. Food Addit Contam. 1996 Jan;13(1):29–52. doi: 10.1080/02652039609374379. [DOI] [PubMed] [Google Scholar]
  43. Weldon M. M., Smolinski M. S., Maroufi A., Hasty B. W., Gilliss D. L., Boulanger L. L., Balluz L. S., Dutton R. J. Mercury poisoning associated with a Mexican beauty cream. West J Med. 2000 Jul;173(1):15–19. doi: 10.1136/ewjm.173.1.15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Wilhelm M., Lombeck I., Kouros B., Wuthe J., Ohnesorge F. K. Duplikatstudie zur Aufnahme von einigen Metallen/Metalloiden bei Kindern in Deutschland. Teil I: Arsen und Quecksilber. Zentralbl Hyg Umweltmed. 1995 Jun;197(5):345–356. [PubMed] [Google Scholar]
  45. Youland D. M., Engle A. Practices and problems in HANES. Dietary data methodology. J Am Diet Assoc. 1976 Jan;68(1):22–25. [PubMed] [Google Scholar]
  46. Ysart G., Miller P., Croasdale M., Crews H., Robb P., Baxter M., de L'Argy C., Harrison N. 1997 UK Total Diet Study--dietary exposures to aluminium, arsenic, cadmium, chromium, copper, lead, mercury, nickel, selenium, tin and zinc. Food Addit Contam. 2000 Sep;17(9):775–786. doi: 10.1080/026520300415327. [DOI] [PubMed] [Google Scholar]
  47. al-Saleh I., Shinwari N. Urinary mercury levels in females: influence of skin-lightening creams and dental amalgam fillings. Biometals. 1997 Oct;10(4):315–323. doi: 10.1023/a:1018380501673. [DOI] [PubMed] [Google Scholar]
  48. al-Shahristani H., Shihab K. M. Variation of biological half-life of methylmercury in man. Arch Environ Health. 1974 Jun;28(6):342–344. doi: 10.1080/00039896.1974.10666505. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES