Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2004 Apr;112(5):620–625. doi: 10.1289/ehp.6687

Cognitive deficits and magnetic resonance spectroscopy in adult monozygotic twins with lead poisoning.

Marc G Weisskopf 1, Howard Hu 1, Robert V Mulkern 1, Roberta White 1, Antonio Aro 1, Steve Oliveira 1, Robert O Wright 1
PMCID: PMC1241931  PMID: 15064171

Abstract

Seventy-one-year-old identical twin brothers with chronic lead poisoning were identified from an occupational medicine clinic roster. Both were retired painters, but one brother (J.G.) primarily removed paint and had a history of higher chronic lead exposure. Patella and tibia bone lead concentrations measured by K-X-ray fluorescence in each brother were 5-10 times those of the general population and about 2.5 times higher in J.G. than in his brother (E.G.). Magnetic resonance spectroscopy (MRS) studies examined N-acetylaspartate:creatine ratios, a marker of neuronal density. Ratios were lower in J.G. than in his brother. Scores on neurocognitive tests that assess working memory/executive function were below expectation in both twins. Short-term memory function was dramatically worse in J.G. than in his brother. These results demonstrate some of the more subtle long-term neurologic effects of chronic lead poisoning in adults. In particular, they suggest the presence of frontal lobe dysfunction in both twins, but more dramatic hippocampal dysfunction in the brother with higher lead exposure. The MRS findings are consistent with the hypothesis that chronic lead exposure caused neuronal loss, which may contribute to the impairment in cognitive function. Although a causal relation cannot be inferred, the brothers were genetically identical, with similar life experiences. Although these results are promising, further study is necessary to determine whether MRS findings correlate both with markers of lead exposure and tests of cognitive function. Nevertheless, the results point to the potential utility of MRS in determining mechanisms of neurotoxicity not only for lead but also for other neurotoxicants as well.

Full Text

The Full Text of this article is available as a PDF (431.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adonaylo V. N., Oteiza P. I. Pb2+ promotes lipid oxidation and alterations in membrane physical properties. Toxicology. 1999 Jan 1;132(1):19–32. doi: 10.1016/s0300-483x(98)00134-6. [DOI] [PubMed] [Google Scholar]
  2. Araki S., Sato H., Yokoyama K., Murata K. Subclinical neurophysiological effects of lead: A review on peripheral, central, and autonomic nervous system effects in lead workers. Am J Ind Med. 2000 Feb;37(2):193–204. doi: 10.1002/(sici)1097-0274(200002)37:2<193::aid-ajim5>3.0.co;2-j. [DOI] [PubMed] [Google Scholar]
  3. Arnold D. L., De Stefano N. Magnetic resonance spectroscopy in vivo: applications in neurological disorders. Ital J Neurol Sci. 1997 Dec;18(6):321–329. doi: 10.1007/BF02048235. [DOI] [PubMed] [Google Scholar]
  4. Arnvig E., Grandjean P., Beckmann J. Neurotoxic effects of heavy lead exposure determined with psychological tests. Toxicol Lett. 1980 May;5(6):399–404. doi: 10.1016/0378-4274(80)90022-3. [DOI] [PubMed] [Google Scholar]
  5. Aro A. C., Todd A. C., Amarasiriwardena C., Hu H. Improvements in the calibration of 109Cd K x-ray fluorescence systems for measuring bone lead in vivo. Phys Med Biol. 1994 Dec;39(12):2263–2271. doi: 10.1088/0031-9155/39/12/009. [DOI] [PubMed] [Google Scholar]
  6. Baker E. L., Feldman R. G., White R. A., Harley J. P., Niles C. A., Dinse G. E., Berkey C. S. Occupational lead neurotoxicity: a behavioural and electrophysiological evaluation. Study design and year one results. Br J Ind Med. 1984 Aug;41(3):352–361. doi: 10.1136/oem.41.3.352. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Balbus-Kornfeld J. M., Stewart W., Bolla K. I., Schwartz B. S. Cumulative exposure to inorganic lead and neurobehavioural test performance in adults: an epidemiological review. Occup Environ Med. 1995 Jan;52(1):2–12. doi: 10.1136/oem.52.1.2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Banks E. C., Ferretti L. E., Shucard D. W. Effects of low level lead exposure on cognitive function in children: a review of behavioral, neuropsychological and biological evidence. Neurotoxicology. 1997;18(1):237–281. [PubMed] [Google Scholar]
  9. Barker P. B., Szopinski K., Horská A. Metabolic heterogeneity at the level of the anterior and posterior commissures. Magn Reson Med. 2000 Mar;43(3):348–354. doi: 10.1002/(sici)1522-2594(200003)43:3<348::aid-mrm5>3.0.co;2-m. [DOI] [PubMed] [Google Scholar]
  10. Barth Alfred, Schaffer Andreas W., Osterode Wolf, Winker Robert, Konnaris Christophoros, Valic Eva, Wolf Christian, Rüdiger Hugo W. Reduced cognitive abilities in lead-exposed men. Int Arch Occup Environ Health. 2002 Apr 25;75(6):394–398. doi: 10.1007/s00420-002-0329-1. [DOI] [PubMed] [Google Scholar]
  11. Bechara E. J. Oxidative stress in acute intermittent porphyria and lead poisoning may be triggered by 5-aminolevulinic acid. Braz J Med Biol Res. 1996 Jul;29(7):841–851. [PubMed] [Google Scholar]
  12. Bleecker M. L., Lindgren K. N., Ford D. P. Differential contribution of current and cumulative indices of lead dose to neuropsychological performance by age. Neurology. 1997 Mar;48(3):639–645. doi: 10.1212/wnl.48.3.639. [DOI] [PubMed] [Google Scholar]
  13. Bleecker Margit L., Lindgren Karen N., Ford D. Patrick, Tiburzi Michael J. The interaction of education and cumulative lead exposure on the Mini-Mental State Examination. J Occup Environ Med. 2002 Jun;44(6):574–578. doi: 10.1097/00043764-200206000-00021. [DOI] [PubMed] [Google Scholar]
  14. Campara P., D'Andrea F., Micciolo R., Savonitto C., Tansella M., Zimmermann-Tansella C. Psychological performance of workers with blood-lead concentration below the current threshold limit value. Int Arch Occup Environ Health. 1984;53(3):233–246. doi: 10.1007/BF00398816. [DOI] [PubMed] [Google Scholar]
  15. Canfield Richard L., Henderson Charles R., Jr, Cory-Slechta Deborah A., Cox Christopher, Jusko Todd A., Lanphear Bruce P. Intellectual impairment in children with blood lead concentrations below 10 microg per deciliter. N Engl J Med. 2003 Apr 17;348(16):1517–1526. doi: 10.1056/NEJMoa022848. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Chan S., Shungu D. C., Douglas-Akinwande A., Lange D. J., Rowland L. P. Motor neuron diseases: comparison of single-voxel proton MR spectroscopy of the motor cortex with MR imaging of the brain. Radiology. 1999 Sep;212(3):763–769. doi: 10.1148/radiology.212.3.r99au35763. [DOI] [PubMed] [Google Scholar]
  17. Cheng Y., Schwartz J., Vokonas P. S., Weiss S. T., Aro A., Hu H. Electrocardiographic conduction disturbances in association with low-level lead exposure (the Normative Aging Study). Am J Cardiol. 1998 Sep 1;82(5):594–599. doi: 10.1016/s0002-9149(98)00402-0. [DOI] [PubMed] [Google Scholar]
  18. Chettle D. R., Scott M. C., Somervaille L. J. Lead in bone: sampling and quantitation using K X-rays excited by 109Cd. Environ Health Perspect. 1991 Feb;91:49–55. doi: 10.1289/ehp.919149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Chia S. E., Chia H. P., Ong C. N., Jeyaratnam J. Cumulative blood lead levels and neurobehavioral test performance. Neurotoxicology. 1997;18(3):793–803. [PubMed] [Google Scholar]
  20. Doraiswamy P. M., Charles H. C., Krishnan K. R. Prediction of cognitive decline in early Alzheimer's disease. Lancet. 1998 Nov 21;352(9141):1678–1678. doi: 10.1016/S0140-6736(05)61449-3. [DOI] [PubMed] [Google Scholar]
  21. Fiedler Nancy, Weisel Clifford, Lynch Richard, Kelly-McNeil Kathie, Wedeen Richard, Jones Keith, Udasin Iris, Ohman-Strickland Pamela, Gochfeld Michael. Cognitive effects of chronic exposure to lead and solvents. Am J Ind Med. 2003 Oct;44(4):413–423. doi: 10.1002/ajim.10287. [DOI] [PubMed] [Google Scholar]
  22. Folstein M. F., Folstein S. E., McHugh P. R. "Mini-mental state". A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975 Nov;12(3):189–198. doi: 10.1016/0022-3956(75)90026-6. [DOI] [PubMed] [Google Scholar]
  23. Fox D. A., He L., Poblenz A. T., Medrano C. J., Blocker Y. S., Srivastava D. Lead-induced alterations in retinal cGMP phosphodiesterase trigger calcium overload, mitochondrial dysfunction and rod photoreceptor apoptosis. Toxicol Lett. 1998 Dec 28;102-103:359–361. doi: 10.1016/s0378-4274(98)00232-x. [DOI] [PubMed] [Google Scholar]
  24. Grandjean P., Arnvig E., Beckmann J. Psychological dysfunctions in lead-exposed workers. Relation to biological parameters of exposure. Scand J Work Environ Health. 1978 Dec;4(4):295–303. doi: 10.5271/sjweh.2696. [DOI] [PubMed] [Google Scholar]
  25. Haenninen H., Hernberg S., Mantere P., Vesanto R., Jalkanen M. Psychological performance of subjects with low exposure to lead. J Occup Med. 1978 Oct;20(10):683–689. [PubMed] [Google Scholar]
  26. Hogstedt C., Hane M., Agrell A., Bodin L. Neuropsychological test results and symptoms among workers with well-defined long-term exposure to lead. Br J Ind Med. 1983 Feb;40(1):99–105. doi: 10.1136/oem.40.1.99. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Hu H., Payton M., Korrick S., Aro A., Sparrow D., Weiss S. T., Rotnitzky A. Determinants of bone and blood lead levels among community-exposed middle-aged to elderly men. The normative aging study. Am J Epidemiol. 1996 Oct 15;144(8):749–759. doi: 10.1093/oxfordjournals.aje.a008999. [DOI] [PubMed] [Google Scholar]
  28. Hänninen H., Aitio A., Kovala T., Luukkonen R., Matikainen E., Mannelin T., Erkkilä J., Riihimäki V. Occupational exposure to lead and neuropsychological dysfunction. Occup Environ Med. 1998 Mar;55(3):202–209. doi: 10.1136/oem.55.3.202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Jayasundar R., Raghunathan P. Evidence for left-right asymmetries in the proton MRS of brain in normal volunteers. Magn Reson Imaging. 1997;15(2):223–234. doi: 10.1016/s0730-725x(96)00342-6. [DOI] [PubMed] [Google Scholar]
  30. Kreis R., Ernst T., Ross B. D. Development of the human brain: in vivo quantification of metabolite and water content with proton magnetic resonance spectroscopy. Magn Reson Med. 1993 Oct;30(4):424–437. doi: 10.1002/mrm.1910300405. [DOI] [PubMed] [Google Scholar]
  31. Levin S. M., Goldberg M. Clinical evaluation and management of lead-exposed construction workers. Am J Ind Med. 2000 Jan;37(1):23–43. doi: 10.1002/(sici)1097-0274(200001)37:1<23::aid-ajim4>3.0.co;2-u. [DOI] [PubMed] [Google Scholar]
  32. Lindgren K. N., Masten V. L., Ford D. P., Bleecker M. L. Relation of cumulative exposure to inorganic lead and neuropsychological test performance. Occup Environ Med. 1996 Jul;53(7):472–477. doi: 10.1136/oem.53.7.472. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Lucchini R., Albini E., Cortesi I., Placidi D., Bergamaschi E., Traversa F., Alessio L. Assessment of neurobehavioral performance as a function of current and cumulative occupational lead exposure. Neurotoxicology. 2000 Oct;21(5):805–811. [PubMed] [Google Scholar]
  34. Lundbom N., Barnett A., Bonavita S., Patronas N., Rajapakse J., Tedeschi, Di Chiro G. MR image segmentation and tissue metabolite contrast in 1H spectroscopic imaging of normal and aging brain. Magn Reson Med. 1999 Apr;41(4):841–845. doi: 10.1002/(sici)1522-2594(199904)41:4<841::aid-mrm25>3.0.co;2-t. [DOI] [PubMed] [Google Scholar]
  35. Muldoon S. B., Cauley J. A., Kuller L. H., Morrow L., Needleman H. L., Scott J., Hooper F. J. Effects of blood lead levels on cognitive function of older women. Neuroepidemiology. 1996;15(2):62–72. doi: 10.1159/000109891. [DOI] [PubMed] [Google Scholar]
  36. Needleman H. L., Gatsonis C. A. Low-level lead exposure and the IQ of children. A meta-analysis of modern studies. JAMA. 1990 Feb 2;263(5):673–678. [PubMed] [Google Scholar]
  37. Osterberg K., Börjesson J., Gerhardsson L., Schütz A., Skerfving S. A neurobehavioural study of long-term occupational inorganic lead exposure. Sci Total Environ. 1997 Aug 1;201(1):39–51. doi: 10.1016/s0048-9697(97)84051-x. [DOI] [PubMed] [Google Scholar]
  38. Payton M., Riggs K. M., Spiro A., 3rd, Weiss S. T., Hu H. Relations of bone and blood lead to cognitive function: the VA Normative Aging Study. Neurotoxicol Teratol. 1998 Jan-Feb;20(1):19–27. doi: 10.1016/s0892-0362(97)00075-5. [DOI] [PubMed] [Google Scholar]
  39. Rabin R., Brooks D. R., Davis L. K. Elevated blood lead levels among construction workers in the Massachusetts Occupational Lead Registry. Am J Public Health. 1994 Sep;84(9):1483–1485. doi: 10.2105/ajph.84.9.1483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Ricci P. E., Pitt A., Keller P. J., Coons S. W., Heiserman J. E. Effect of voxel position on single-voxel MR spectroscopy findings. AJNR Am J Neuroradiol. 2000 Feb;21(2):367–374. [PMC free article] [PubMed] [Google Scholar]
  41. Schwartz B. S., Lee B. K., Lee G. S., Stewart W. F., Lee S. S., Hwang K. Y., Ahn K. D., Kim Y. B., Bolla K. I., Simon D. Associations of blood lead, dimercaptosuccinic acid-chelatable lead, and tibia lead with neurobehavioral test scores in South Korean lead workers. Am J Epidemiol. 2001 Mar 1;153(5):453–464. doi: 10.1093/aje/153.5.453. [DOI] [PubMed] [Google Scholar]
  42. Schwartz B. S., Stewart W. F., Bolla K. I., Simon P. D., Bandeen-Roche K., Gordon P. B., Links J. M., Todd A. C. Past adult lead exposure is associated with longitudinal decline in cognitive function. Neurology. 2000 Oct 24;55(8):1144–1150. doi: 10.1212/wnl.55.8.1144. [DOI] [PubMed] [Google Scholar]
  43. Schwartz J. Low-level lead exposure and children's IQ: a meta-analysis and search for a threshold. Environ Res. 1994 Apr;65(1):42–55. doi: 10.1006/enrs.1994.1020. [DOI] [PubMed] [Google Scholar]
  44. Seeber Andreas, Meyer-Baron Monika, Schäper Michael. A summary of two meta-analyses on neurobehavioural effects due to occupational lead exposure. Arch Toxicol. 2002 Mar 6;76(3):137–145. doi: 10.1007/s00204-001-0315-5. [DOI] [PubMed] [Google Scholar]
  45. Stewart W. F., Schwartz B. S., Simon D., Bolla K. I., Todd A. C., Links J. Neurobehavioral function and tibial and chelatable lead levels in 543 former organolead workers. Neurology. 1999 May 12;52(8):1610–1617. doi: 10.1212/wnl.52.8.1610. [DOI] [PubMed] [Google Scholar]
  46. Stewart Walter F., Schwartz Brian S., Simon David, Kelsey Karl, Todd Andrew C. ApoE genotype, past adult lead exposure, and neurobehavioral function. Environ Health Perspect. 2002 May;110(5):501–505. doi: 10.1289/ehp.02110501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Stollery B. T., Broadbent D. E., Banks H. A., Lee W. R. Short term prospective study of cognitive functioning in lead workers. Br J Ind Med. 1991 Nov;48(11):739–749. doi: 10.1136/oem.48.11.739. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Stollery B. T. Reaction time changes in workers exposed to lead. Neurotoxicol Teratol. 1996 Jul-Aug;18(4):477–483. doi: 10.1016/0892-0362(96)00080-3. [DOI] [PubMed] [Google Scholar]
  49. Trope I., Lopez-Villegas D., Cecil K. M., Lenkinski R. E. Exposure to lead appears to selectively alter metabolism of cortical gray matter. Pediatrics. 2001 Jun;107(6):1437–1442. doi: 10.1542/peds.107.6.1437. [DOI] [PubMed] [Google Scholar]
  50. Valciukas J. A., Lilis R., Eisinger J., Blumberg W. E., Fischbein A., Selikoff I. J. Behavioral indicators of lead neurotoxicity: results of a clinical field survey. Int Arch Occup Environ Health. 1978 Jul 14;41(4):217–236. doi: 10.1007/BF00378753. [DOI] [PubMed] [Google Scholar]
  51. Wright Robert O., Tsaih Shirng Wern, Schwartz Joel, Spiro Avron, 3rd, McDonald Karen, Weiss Scott T., Hu Howard. Lead exposure biomarkers and mini-mental status exam scores in older men. Epidemiology. 2003 Nov;14(6):713–718. doi: 10.1097/01.EDE.0000081988.85964.db. [DOI] [PubMed] [Google Scholar]
  52. van der Knaap M. S., van der Grond J., Luyten P. R., den Hollander J. A., Nauta J. J., Valk J. 1H and 31P magnetic resonance spectroscopy of the brain in degenerative cerebral disorders. Ann Neurol. 1992 Feb;31(2):202–211. doi: 10.1002/ana.410310211. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES