Abstract
Communication on a cellular level--defined as chemical signaling, sensing, and response--is an essential and universal component of all living organisms and the framework that unites all ecosystems. Evolutionarily conserved signaling "webs," existing both within an organism and between organisms, rely on efficient and accurate interpretation of chemical signals by receptors. Therefore, endocrine-disrupting chemicals (EDCs), which have been shown to disrupt hormone signaling in laboratory animals and exposed wildlife, may have broader implications for disrupting signaling webs that have yet to be identified as possible targets. In this article, I explore common evolutionary themes of chemical signaling (e.g., estrogen signaling in vertebrates and phytoestrogen signaling from plants to symbiotic soil bacteria) and show that such signaling systems are targets of disruption by EDCs. Recent evolutionary phylogenetic data have shown that the estrogen receptor (ER) is the ancestral receptor from which all other steroid receptors have evolved. In addition to binding endogenous estrogens, ERs also bind phytoestrogens, an ability shared in common with nodulation D protein (NodD) receptors found in Rhizobium soil bacteria. Recent data have shown that many of the same synthetic and natural environmental chemicals that disrupt endocrine signaling in vertebrates also disrupt phytoestrogen-NodD receptor signaling in soil bacteria, which is necessary for nitrogen-fixing symbiosis. Bacteria-plant symbiosis is an unexpected target of EDCs, and other unexpected nontarget species may also be vulnerable to EDCs found in the environment.
Full Text
The Full Text of this article is available as a PDF (143.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baker M. E. Evolution of regulation of steroid-mediated intercellular communication in vertebrates: insights from flavonoids, signals that mediate plant-rhizobia symbiosis. J Steroid Biochem Mol Biol. 1992 Mar;41(3-8):301–308. doi: 10.1016/0960-0760(92)90355-m. [DOI] [PubMed] [Google Scholar]
- Baker M. E. Genealogy of regulation of human sex and adrenal function, prostaglandin action, snapdragon and petunia flower colors, antibiotics, and nitrogen fixation: functional diversity from two ancestral dehydrogenases. Steroids. 1991 Jul;56(7):354–360. doi: 10.1016/0039-128x(91)90067-6. [DOI] [PubMed] [Google Scholar]
- Baker M. E. Human placental 17 beta-hydroxysteroid dehydrogenase is homologous to NodG protein of Rhizobium meliloti. Mol Endocrinol. 1989 May;3(5):881–884. doi: 10.1210/mend-3-5-881. [DOI] [PubMed] [Google Scholar]
- Baker M. E. Recent insights into the origins of adrenal and sex steroid receptors. J Mol Endocrinol. 2002 Jun;28(3):149–152. doi: 10.1677/jme.0.0280149. [DOI] [PubMed] [Google Scholar]
- Baker M. E. Similarities between legume-rhizobium communication and steroid-mediated intercellular communication in vertebrates. Can J Microbiol. 1992 Jun;38(6):541–547. doi: 10.1139/m92-089. [DOI] [PubMed] [Google Scholar]
- Benner S. A., Chamberlin S. G., Liberles D. A., Govindarajan S., Knecht L. Functional inferences from reconstructed evolutionary biology involving rectified databases--an evolutionarily grounded approach to functional genomics. Res Microbiol. 2000 Mar;151(2):97–106. doi: 10.1016/s0923-2508(00)00123-6. [DOI] [PubMed] [Google Scholar]
- Bitman J., Cecil H. C., Harris S. J., Fries G. F. Estrogenic activity of o,p'-DDT in the mammalian uterus and avian oviduct. Science. 1968 Oct 18;162(3851):371–372. doi: 10.1126/science.162.3851.371. [DOI] [PubMed] [Google Scholar]
- Björnström Linda, Sjöberg Maria. Signal transducers and activators of transcription as downstream targets of nongenomic estrogen receptor actions. Mol Endocrinol. 2002 Oct;16(10):2202–2214. doi: 10.1210/me.2002-0072. [DOI] [PubMed] [Google Scholar]
- Blair R. M., Fang H., Branham W. S., Hass B. S., Dial S. L., Moland C. L., Tong W., Shi L., Perkins R., Sheehan D. M. The estrogen receptor relative binding affinities of 188 natural and xenochemicals: structural diversity of ligands. Toxicol Sci. 2000 Mar;54(1):138–153. doi: 10.1093/toxsci/54.1.138. [DOI] [PubMed] [Google Scholar]
- Bolduc Nathalie, Ouellet Mario, Pitre Frédéric, Brisson Louise F. Molecular characterization of two plant BI-1 homologues which suppress Bax-induced apoptosis in human 293 cells. Planta. 2002 Oct 8;216(3):377–386. doi: 10.1007/s00425-002-0879-1. [DOI] [PubMed] [Google Scholar]
- Cheek A. O., Vonier P. M., Oberdörster E., Burow B. C., McLachlan J. A. Environmental signaling: a biological context for endocrine disruption. Environ Health Perspect. 1998 Feb;106 (Suppl 1):5–10. doi: 10.1289/ehp.106-1533276. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cheung J., Smith D. F. Molecular chaperone interactions with steroid receptors: an update. Mol Endocrinol. 2000 Jul;14(7):939–946. doi: 10.1210/mend.14.7.0489. [DOI] [PubMed] [Google Scholar]
- Clark K. L., Larsen P. B., Wang X., Chang C. Association of the Arabidopsis CTR1 Raf-like kinase with the ETR1 and ERS ethylene receptors. Proc Natl Acad Sci U S A. 1998 Apr 28;95(9):5401–5406. doi: 10.1073/pnas.95.9.5401. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Coldham N. G., Dave M., Sivapathasundaram S., McDonnell D. P., Connor C., Sauer M. J. Evaluation of a recombinant yeast cell estrogen screening assay. Environ Health Perspect. 1997 Jul;105(7):734–742. doi: 10.1289/ehp.97105734. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Collins-Burow B. M., Burow M. E., Duong B. N., McLachlan J. A. Estrogenic and antiestrogenic activities of flavonoid phytochemicals through estrogen receptor binding-dependent and -independent mechanisms. Nutr Cancer. 2000;38(2):229–244. doi: 10.1207/S15327914NC382_13. [DOI] [PubMed] [Google Scholar]
- Crump Doug, Werry Kate, Veldhoen Nik, Van Aggelen Graham, Helbing Caren C. Exposure to the herbicide acetochlor alters thyroid hormone-dependent gene expression and metamorphosis in Xenopus Laevis. Environ Health Perspect. 2002 Dec;110(12):1199–1205. doi: 10.1289/ehp.021101199. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Custodia N., Won S. J., Novillo A., Wieland M., Li C., Callard I. P. Caenorhabditis elegans as an environmental monitor using DNA microarray analysis. Ann N Y Acad Sci. 2001 Dec;948:32–42. doi: 10.1111/j.1749-6632.2001.tb03984.x. [DOI] [PubMed] [Google Scholar]
- Danzo B. J. Environmental xenobiotics may disrupt normal endocrine function by interfering with the binding of physiological ligands to steroid receptors and binding proteins. Environ Health Perspect. 1997 Mar;105(3):294–301. doi: 10.1289/ehp.97105294. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Djordjevic M. A., Redmond J. W., Batley M., Rolfe B. G. Clovers secrete specific phenolic compounds which either stimulate or repress nod gene expression in Rhizobium trifolii. EMBO J. 1987 May;6(5):1173–1179. doi: 10.1002/j.1460-2075.1987.tb02351.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dunn Anne K., Handelsman Jo. Toward an understanding of microbial communities through analysis of communication networks. Antonie Van Leeuwenhoek. 2002 Aug;81(1-4):565–574. doi: 10.1023/a:1020565807627. [DOI] [PubMed] [Google Scholar]
- Facemire C. F., Gross T. S., Guillette L. J., Jr Reproductive impairment in the Florida panther: nature or nurture? Environ Health Perspect. 1995 May;103 (Suppl 4):79–86. doi: 10.1289/ehp.103-1519283. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fisher R. F., Long S. R. Interactions of NodD at the nod Box: NodD binds to two distinct sites on the same face of the helix and induces a bend in the DNA. J Mol Biol. 1993 Oct 5;233(3):336–348. doi: 10.1006/jmbi.1993.1515. [DOI] [PubMed] [Google Scholar]
- Fox J. E., Starcevic M., Kow K. Y., Burow M. E., McLachlan J. A. Nitrogen fixation. Endocrine disrupters and flavonoid signalling. Nature. 2001 Sep 13;413(6852):128–129. doi: 10.1038/35093163. [DOI] [PubMed] [Google Scholar]
- Frigo Daniel E., Duong Bich N., Melnik Lilia I., Schief Lawanda S., Collins-Burow Bridgette M., Pace Daniel K., McLachlan John A., Burow Matthew E. Flavonoid phytochemicals regulate activator protein-1 signal transduction pathways in endometrial and kidney stable cell lines. J Nutr. 2002 Jul;132(7):1848–1853. doi: 10.1093/jn/132.7.1848. [DOI] [PubMed] [Google Scholar]
- Guerrieri E., Poppy G. M., Powell W., Rao R., Pennacchio F. Plant-to-plant communication mediating in-flight orientation of Aphidius ervi. J Chem Ecol. 2002 Sep;28(9):1703–1715. doi: 10.1023/a:1020553531658. [DOI] [PubMed] [Google Scholar]
- Guillette L. J., Jr Organochlorine pesticides as endocrine disruptors in wildlife. Cent Eur J Public Health. 2000 Jul;8 (Suppl):34–35. [PubMed] [Google Scholar]
- Györgypal Z., Kondorosi A. Homology of the ligand-binding regions of Rhizobium symbiotic regulatory protein NodD and vertebrate nuclear receptors. Mol Gen Genet. 1991 Apr;226(1-2):337–340. doi: 10.1007/BF00273624. [DOI] [PubMed] [Google Scholar]
- Hayes Tyrone B., Collins Atif, Lee Melissa, Mendoza Magdelena, Noriega Nigel, Stuart A. Ali, Vonk Aaron. Hermaphroditic, demasculinized frogs after exposure to the herbicide atrazine at low ecologically relevant doses. Proc Natl Acad Sci U S A. 2002 Apr 16;99(8):5476–5480. doi: 10.1073/pnas.082121499. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ishihara Akinori, Nishiyama Norihito, Sugiyama Shin-ichiro, Yamauchi Kiyoshi. The effect of endocrine disrupting chemicals on thyroid hormone binding to Japanese quail transthyretin and thyroid hormone receptor. Gen Comp Endocrinol. 2003 Oct 15;134(1):36–43. doi: 10.1016/s0016-6480(03)00197-7. [DOI] [PubMed] [Google Scholar]
- Jobling S., Beresford N., Nolan M., Rodgers-Gray T., Brighty G. C., Sumpter J. P., Tyler C. R. Altered sexual maturation and gamete production in wild roach (Rutilus rutilus) living in rivers that receive treated sewage effluents. Biol Reprod. 2002 Feb;66(2):272–281. doi: 10.1095/biolreprod66.2.272. [DOI] [PubMed] [Google Scholar]
- Katzenellenbogen B. S., Choi I., Delage-Mourroux R., Ediger T. R., Martini P. G., Montano M., Sun J., Weis K., Katzenellenbogen J. A. Molecular mechanisms of estrogen action: selective ligands and receptor pharmacology. J Steroid Biochem Mol Biol. 2000 Nov 30;74(5):279–285. doi: 10.1016/s0960-0760(00)00104-7. [DOI] [PubMed] [Google Scholar]
- Kay R. R. The biosynthesis of differentiation-inducing factor, a chlorinated signal molecule regulating Dictyostelium development. J Biol Chem. 1998 Jan 30;273(5):2669–2675. doi: 10.1074/jbc.273.5.2669. [DOI] [PubMed] [Google Scholar]
- Klotz Diane M., Hewitt Sylvia Curtis, Ciana Paolo, Raviscioni Michele, Lindzey Jonathan K., Foley Julie, Maggi Adriana, DiAugustine Richard P., Korach Kenneth S. Requirement of estrogen receptor-alpha in insulin-like growth factor-1 (IGF-1)-induced uterine responses and in vivo evidence for IGF-1/estrogen receptor cross-talk. J Biol Chem. 2001 Dec 21;277(10):8531–8537. doi: 10.1074/jbc.M109592200. [DOI] [PubMed] [Google Scholar]
- Koonin Eugene V., Wolf Yuri I., Karev Georgy P. The structure of the protein universe and genome evolution. Nature. 2002 Nov 14;420(6912):218–223. doi: 10.1038/nature01256. [DOI] [PubMed] [Google Scholar]
- Korach K. S., Metzler M., McLachlan J. A. Diethylstilbestrol metabolites and analogs. New probes for the study of hormone action. J Biol Chem. 1979 Sep 25;254(18):8963–8968. [PubMed] [Google Scholar]
- Kuiper G. G., Lemmen J. G., Carlsson B., Corton J. C., Safe S. H., van der Saag P. T., van der Burg B., Gustafsson J. A. Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta. Endocrinology. 1998 Oct;139(10):4252–4263. doi: 10.1210/endo.139.10.6216. [DOI] [PubMed] [Google Scholar]
- Lai C. H., Chou C. Y., Ch'ang L. Y., Liu C. S., Lin W. Identification of novel human genes evolutionarily conserved in Caenorhabditis elegans by comparative proteomics. Genome Res. 2000 May;10(5):703–713. doi: 10.1101/gr.10.5.703. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LeVier K., Phillips R. W., Grippe V. K., Roop R. M., 2nd, Walker G. C. Similar requirements of a plant symbiont and a mammalian pathogen for prolonged intracellular survival. Science. 2000 Mar 31;287(5462):2492–2493. doi: 10.1126/science.287.5462.2492. [DOI] [PubMed] [Google Scholar]
- Li J., Biswas M. G., Chao A., Russell D. W., Chory J. Conservation of function between mammalian and plant steroid 5alpha-reductases. Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):3554–3559. doi: 10.1073/pnas.94.8.3554. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Long S. R. Rhizobium-legume nodulation: life together in the underground. Cell. 1989 Jan 27;56(2):203–214. doi: 10.1016/0092-8674(89)90893-3. [DOI] [PubMed] [Google Scholar]
- McFall-Ngai Margaret J. Unseen forces: the influence of bacteria on animal development. Dev Biol. 2002 Feb 1;242(1):1–14. doi: 10.1006/dbio.2001.0522. [DOI] [PubMed] [Google Scholar]
- McLachlan J. A. Environmental signaling: what embryos and evolution teach us about endocrine disrupting chemicals. Endocr Rev. 2001 Jun;22(3):319–341. doi: 10.1210/edrv.22.3.0432. [DOI] [PubMed] [Google Scholar]
- McLachlan J. A., Korach K. S., Newbold R. R., Degen G. H. Diethylstilbestrol and other estrogens in the environment. Fundam Appl Toxicol. 1984 Oct;4(5):686–691. doi: 10.1016/0272-0590(84)90089-7. [DOI] [PubMed] [Google Scholar]
- Metzler M., Pfeiffer E. Effects of estrogens on microtubule polymerization in vitro: correlation with estrogenicity. Environ Health Perspect. 1995 Oct;103 (Suppl 7):21–22. doi: 10.1289/ehp.95103s721. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meyerowitz Elliot M. Plants compared to animals: the broadest comparative study of development. Science. 2002 Feb 22;295(5559):1482–1485. doi: 10.1126/science.1066609. [DOI] [PubMed] [Google Scholar]
- Milanesi L., Monje P., Boland R. Presence of estrogens and estrogen receptor-like proteins in Solanum glaucophyllum. Biochem Biophys Res Commun. 2001 Dec 21;289(5):1175–1179. doi: 10.1006/bbrc.2001.6079. [DOI] [PubMed] [Google Scholar]
- Mitra J., Raghu K. Long-term DDT pollution in tropical soils: effect of DDT and degradation products on soil microbial activities leading to soil fertility. Bull Environ Contam Toxicol. 1998 Apr;60(4):585–591. doi: 10.1007/s001289900665. [DOI] [PubMed] [Google Scholar]
- Moriyama Kenji, Tagami Tetsuya, Akamizu Takashi, Usui Takeshi, Saijo Misa, Kanamoto Naotetsu, Hataya Yuji, Shimatsu Akira, Kuzuya Hideshi, Nakao Kazuwa. Thyroid hormone action is disrupted by bisphenol A as an antagonist. J Clin Endocrinol Metab. 2002 Nov;87(11):5185–5190. doi: 10.1210/jc.2002-020209. [DOI] [PubMed] [Google Scholar]
- Nair S. C., Toran E. J., Rimerman R. A., Hjermstad S., Smithgall T. E., Smith D. F. A pathway of multi-chaperone interactions common to diverse regulatory proteins: estrogen receptor, Fes tyrosine kinase, heat shock transcription factor Hsf1, and the aryl hydrocarbon receptor. Cell Stress Chaperones. 1996 Dec;1(4):237–250. doi: 10.1379/1466-1268(1996)001<0237:apomci>2.3.co;2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nelson J. A. Effects of dichlorodiphenyltrichloroethane (DDT) analogs and polychlorinated biphenyl (PCB) mixtures on 17beta-(3H)estradiol binding to rat uterine receptor. Biochem Pharmacol. 1974 Jan 15;23(2):447–451. doi: 10.1016/0006-2952(74)90436-5. [DOI] [PubMed] [Google Scholar]
- Oberdörster E., Clay M. A., Cottam D. M., Wilmot F. A., McLachlan J. A., Milner M. J. Common phytochemicals are ecdysteroid agonists and antagonists: a possible evolutionary link between vertebrate and invertebrate steroid hormones. J Steroid Biochem Mol Biol. 2001 Jun;77(4-5):229–238. doi: 10.1016/s0960-0760(01)00067-x. [DOI] [PubMed] [Google Scholar]
- Peters N. K., Frost J. W., Long S. R. A plant flavone, luteolin, induces expression of Rhizobium meliloti nodulation genes. Science. 1986 Aug 29;233(4767):977–980. doi: 10.1126/science.3738520. [DOI] [PubMed] [Google Scholar]
- Peters N. K., Long S. R. Alfalfa Root Exudates and Compounds which Promote or Inhibit Induction of Rhizobium meliloti Nodulation Genes. Plant Physiol. 1988 Oct;88(2):396–400. doi: 10.1104/pp.88.2.396. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Petit F., Le Goff P., Cravédi J. P., Valotaire Y., Pakdel F. Two complementary bioassays for screening the estrogenic potency of xenobiotics: recombinant yeast for trout estrogen receptor and trout hepatocyte cultures. J Mol Endocrinol. 1997 Dec;19(3):321–335. doi: 10.1677/jme.0.0190321. [DOI] [PubMed] [Google Scholar]
- Rives Alexander W., Galitski Timothy. Modular organization of cellular networks. Proc Natl Acad Sci U S A. 2003 Jan 21;100(3):1128–1133. doi: 10.1073/pnas.0237338100. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Seiler Jürg P. Pharmacodynamic activity of drugs and ecotoxicology--can the two be connected? Toxicol Lett. 2002 May 10;131(1-2):105–115. doi: 10.1016/s0378-4274(02)00045-0. [DOI] [PubMed] [Google Scholar]
- Sheeler C. Q., Dudley M. W., Khan S. A. Environmental estrogens induce transcriptionally active estrogen receptor dimers in yeast: activity potentiated by the coactivator RIP140. Environ Health Perspect. 2000 Feb;108(2):97–103. doi: 10.1289/ehp.0010897. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stracke Silke, Kistner Catherine, Yoshida Satoko, Mulder Lonneke, Sato Shusei, Kaneko Takakazu, Tabata Satoshi, Sandal Niels, Stougaard Jens, Szczyglowski Krzysztof. A plant receptor-like kinase required for both bacterial and fungal symbiosis. Nature. 2002 Jun 27;417(6892):959–962. doi: 10.1038/nature00841. [DOI] [PubMed] [Google Scholar]
- Süel Gürol M., Lockless Steve W., Wall Mark A., Ranganathan Rama. Evolutionarily conserved networks of residues mediate allosteric communication in proteins. Nat Struct Biol. 2003 Jan;10(1):59–69. doi: 10.1038/nsb881. [DOI] [PubMed] [Google Scholar]
- Takayama S., Reed J. C. Molecular chaperone targeting and regulation by BAG family proteins. Nat Cell Biol. 2001 Oct;3(10):E237–E241. doi: 10.1038/ncb1001-e237. [DOI] [PubMed] [Google Scholar]
- Takeshita A., Koibuchi N., Oka J., Taguchi M., Shishiba Y., Ozawa Y. Bisphenol-A, an environmental estrogen, activates the human orphan nuclear receptor, steroid and xenobiotic receptor-mediated transcription. Eur J Endocrinol. 2001 Oct;145(4):513–517. doi: 10.1530/eje.0.1450513. [DOI] [PubMed] [Google Scholar]
- Tarrant A. M., Atkinson S., Atkinson M. J. Estrone and estradiol-17 beta concentration in tissue of the scleractinian coral, Montipora verrucosa. Comp Biochem Physiol A Mol Integr Physiol. 1999 Jan;122(1):85–92. doi: 10.1016/s1095-6433(98)10155-1. [DOI] [PubMed] [Google Scholar]
- Thompson J. N. The evolution of species interactions. Science. 1999 Jun 25;284(5423):2116–2118. doi: 10.1126/science.284.5423.2116. [DOI] [PubMed] [Google Scholar]
- Thornton J. W. Evolution of vertebrate steroid receptors from an ancestral estrogen receptor by ligand exploitation and serial genome expansions. Proc Natl Acad Sci U S A. 2001 May 1;98(10):5671–5676. doi: 10.1073/pnas.091553298. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thornton Joseph W., Need Eleanor, Crews David. Resurrecting the ancestral steroid receptor: ancient origin of estrogen signaling. Science. 2003 Sep 19;301(5640):1714–1717. doi: 10.1126/science.1086185. [DOI] [PubMed] [Google Scholar]
- Todd A. E., Orengo C. A., Thornton J. M. Evolution of function in protein superfamilies, from a structural perspective. J Mol Biol. 2001 Apr 6;307(4):1113–1143. doi: 10.1006/jmbi.2001.4513. [DOI] [PubMed] [Google Scholar]
- Town C. D., Gross J. D., Kay R. R. Cell differentiation without morphogenesis in Dictyostelium discoideum. Nature. 1976 Aug 19;262(5570):717–719. doi: 10.1038/262717a0. [DOI] [PubMed] [Google Scholar]
- Tyler C. R., Jobling S., Sumpter J. P. Endocrine disruption in wildlife: a critical review of the evidence. Crit Rev Toxicol. 1998 Jul;28(4):319–361. doi: 10.1080/10408449891344236. [DOI] [PubMed] [Google Scholar]
- Weinstein-Oppenheimer Caroline R., Burrows Carlo, Steelman Linda S., McCubrey James A. The effects of beta-estradiol on Raf activity, cell cycle progression and growth factor synthesis in the MCF-7 breast cancer cell line. Cancer Biol Ther. 2002 May-Jun;1(3):256–262. doi: 10.4161/cbt.77. [DOI] [PubMed] [Google Scholar]
- Weldon Christopher B., Scandurro Ali B., Rolfe Kevin W., Clayton John L., Elliott Steven, Butler Nancy N., Melnik Lilia I., Alam Jawed, McLachlan John A., Jaffe Bernard M. Identification of mitogen-activated protein kinase kinase as a chemoresistant pathway in MCF-7 cells by using gene expression microarray. Surgery. 2002 Aug;132(2):293–301. doi: 10.1067/msy.2002.125389. [DOI] [PubMed] [Google Scholar]
- Whiting Michael F., Bradler Sven, Maxwell Taylor. Loss and recovery of wings in stick insects. Nature. 2003 Jan 16;421(6920):264–267. doi: 10.1038/nature01313. [DOI] [PubMed] [Google Scholar]
- Whitten P. L., Patisaul H. B. Cross-species and interassay comparisons of phytoestrogen action. Environ Health Perspect. 2001 Mar;109 (Suppl 1):5–20. doi: 10.1289/ehp.01109s15. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wu W. Z., Li W., Xu Y., Wang J. W. Long-term toxic impact of 2,3,7,8-tetrachlorodibenzo-p-dioxin on the reproduction, sexual differentiation, and development of different life stages of Gobiocypris rarus and Daphnia magna. Ecotoxicol Environ Saf. 2001 Mar;48(3):293–300. doi: 10.1006/eesa.2000.2013. [DOI] [PubMed] [Google Scholar]
- Wynne-Edwards K. E. Evolutionary biology of plant defenses against herbivory and their predictive implications for endocrine disruptor susceptibility in vertebrates. Environ Health Perspect. 2001 May;109(5):443–448. doi: 10.1289/ehp.01109443. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yeh Kuo-Chen, Peck Melicent C., Long Sharon R. Luteolin and GroESL modulate in vitro activity of NodD. J Bacteriol. 2002 Jan;184(2):525–530. doi: 10.1128/JB.184.2.525-530.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zava D. T., Blen M., Duwe G. Estrogenic activity of natural and synthetic estrogens in human breast cancer cells in culture. Environ Health Perspect. 1997 Apr;105 (Suppl 3):637–645. doi: 10.1289/ehp.97105s3637. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zava D. T., Duwe G. Estrogenic and antiproliferative properties of genistein and other flavonoids in human breast cancer cells in vitro. Nutr Cancer. 1997;27(1):31–40. doi: 10.1080/01635589709514498. [DOI] [PubMed] [Google Scholar]
- van Rhijn P., Vanderleyden J. The Rhizobium-plant symbiosis. Microbiol Rev. 1995 Mar;59(1):124–142. doi: 10.1128/mr.59.1.124-142.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]