Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2004 May;112(6):672–677. doi: 10.1289/ehp.6456

Phytoestrogen signaling and symbiotic gene activation are disrupted by endocrine-disrupting chemicals.

Jennifer E Fox 1, Marta Starcevic 1, Phillip E Jones 1, Matthew E Burow 1, John A McLachlan 1
PMCID: PMC1241960  PMID: 15121509

Abstract

Some organochlorine pesticides and other synthetic chemicals mimic hormones in representatives of each vertebrate class, including mammals, reptiles, amphibians, birds, and fish. These compounds are called endocrine-disrupting chemicals (EDCs). Similarly, hormonelike signaling has also been observed when vertebrates are exposed to plant chemicals called phytoestrogens. Previous research has shown the mechanism of action for EDCs and phytoestrogens is as unintended ligands for the estrogen receptor (ER). Although pesticides have been synthesized to deter insects and weeds, plants produce phytoestrogens to deter herbivores, as attractant cues for insects, and as recruitment signals for symbiotic soil bacteria. Our data present the first evidence that some of the same organochlorine pesticides and EDCs known to disrupt endocrine signaling through ERs in exposed wildlife and humans also disrupt the phytoestrogen signaling that leguminous plants use to recruit Sinorhizobium meliloti soil bacteria for symbiotic nitrogen fixation. Here we report that a variety of EDCs and pesticides commonly found in agricultural soils interfere with the symbiotic signaling necessary for nitrogen fixation, suggesting that the principles underlying endocrine disruption may have more widespread biological and ecological importance than had once been thought.

Full Text

The Full Text of this article is available as a PDF (145.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersen M. E., Conolly R. B., Faustman E. M., Kavlock R. J., Portier C. J., Sheehan D. M., Wier P. J., Ziese L. Quantitative mechanistically based dose-response modeling with endocrine-active compounds. Environ Health Perspect. 1999 Aug;107 (Suppl 4):631–638. doi: 10.1289/ehp.99107s4631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bergeron J. M., Crews D., McLachlan J. A. PCBs as environmental estrogens: turtle sex determination as a biomarker of environmental contamination. Environ Health Perspect. 1994 Sep;102(9):780–781. doi: 10.1289/ehp.94102780. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bladergroen M. R., Spaink H. P. Genes and signal molecules involved in the rhizobia-leguminoseae symbiosis. Curr Opin Plant Biol. 1998 Aug;1(4):353–359. doi: 10.1016/1369-5266(88)80059-1. [DOI] [PubMed] [Google Scholar]
  4. Breinholt V., Larsen J. C. Detection of weak estrogenic flavonoids using a recombinant yeast strain and a modified MCF7 cell proliferation assay. Chem Res Toxicol. 1998 Jun;11(6):622–629. doi: 10.1021/tx970170y. [DOI] [PubMed] [Google Scholar]
  5. Cheek A. O., Vonier P. M., Oberdörster E., Burow B. C., McLachlan J. A. Environmental signaling: a biological context for endocrine disruption. Environ Health Perspect. 1998 Feb;106 (Suppl 1):5–10. doi: 10.1289/ehp.106-1533276. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Collins-Burow B. M., Burow M. E., Duong B. N., McLachlan J. A. Estrogenic and antiestrogenic activities of flavonoid phytochemicals through estrogen receptor binding-dependent and -independent mechanisms. Nutr Cancer. 2000;38(2):229–244. doi: 10.1207/S15327914NC382_13. [DOI] [PubMed] [Google Scholar]
  7. Daniel O., Meier M. S., Schlatter J., Frischknecht P. Selected phenolic compounds in cultivated plants: ecologic functions, health implications, and modulation by pesticides. Environ Health Perspect. 1999 Feb;107 (Suppl 1):109–114. doi: 10.1289/ehp.99107s1109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Djordjevic M. A., Redmond J. W., Batley M., Rolfe B. G. Clovers secrete specific phenolic compounds which either stimulate or repress nod gene expression in Rhizobium trifolii. EMBO J. 1987 May;6(5):1173–1179. doi: 10.1002/j.1460-2075.1987.tb02351.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fox J. E., Starcevic M., Kow K. Y., Burow M. E., McLachlan J. A. Nitrogen fixation. Endocrine disrupters and flavonoid signalling. Nature. 2001 Sep 13;413(6852):128–129. doi: 10.1038/35093163. [DOI] [PubMed] [Google Scholar]
  10. Fry D. M., Toone C. K. DDT-induced feminization of gull embryos. Science. 1981 Aug 21;213(4510):922–924. doi: 10.1126/science.7256288. [DOI] [PubMed] [Google Scholar]
  11. Garry V. F., Burroughs B., Tarone R., Kesner J. S. Herbicides and adjuvants: an evolving view. Toxicol Ind Health. 1999 Jan-Mar;15(1-2):159–167. doi: 10.1191/074823399678846619. [DOI] [PubMed] [Google Scholar]
  12. Györgypal Z., Kondorosi A. Homology of the ligand-binding regions of Rhizobium symbiotic regulatory protein NodD and vertebrate nuclear receptors. Mol Gen Genet. 1991 Apr;226(1-2):337–340. doi: 10.1007/BF00273624. [DOI] [PubMed] [Google Scholar]
  13. Kelce W. R., Stone C. R., Laws S. C., Gray L. E., Kemppainen J. A., Wilson E. M. Persistent DDT metabolite p,p'-DDE is a potent androgen receptor antagonist. Nature. 1995 Jun 15;375(6532):581–585. doi: 10.1038/375581a0. [DOI] [PubMed] [Google Scholar]
  14. Korach K. S., Metzler M., McLachlan J. A. Diethylstilbestrol metabolites and analogs. New probes for the study of hormone action. J Biol Chem. 1979 Sep 25;254(18):8963–8968. [PubMed] [Google Scholar]
  15. Korach K. S., Sarver P., Chae K., McLachlan J. A., McKinney J. D. Estrogen receptor-binding activity of polychlorinated hydroxybiphenyls: conformationally restricted structural probes. Mol Pharmacol. 1988 Jan;33(1):120–126. [PubMed] [Google Scholar]
  16. Kuiper G. G., Lemmen J. G., Carlsson B., Corton J. C., Safe S. H., van der Saag P. T., van der Burg B., Gustafsson J. A. Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta. Endocrinology. 1998 Oct;139(10):4252–4263. doi: 10.1210/endo.139.10.6216. [DOI] [PubMed] [Google Scholar]
  17. Kurzer M. S., Xu X. Dietary phytoestrogens. Annu Rev Nutr. 1997;17:353–381. doi: 10.1146/annurev.nutr.17.1.353. [DOI] [PubMed] [Google Scholar]
  18. Long S. R. Rhizobium-legume nodulation: life together in the underground. Cell. 1989 Jan 27;56(2):203–214. doi: 10.1016/0092-8674(89)90893-3. [DOI] [PubMed] [Google Scholar]
  19. Longnecker M. P., Rogan W. J., Lucier G. The human health effects of DDT (dichlorodiphenyltrichloroethane) and PCBS (polychlorinated biphenyls) and an overview of organochlorines in public health. Annu Rev Public Health. 1997;18:211–244. doi: 10.1146/annurev.publhealth.18.1.211. [DOI] [PubMed] [Google Scholar]
  20. McLachlan J. A. Environmental signaling: what embryos and evolution teach us about endocrine disrupting chemicals. Endocr Rev. 2001 Jun;22(3):319–341. doi: 10.1210/edrv.22.3.0432. [DOI] [PubMed] [Google Scholar]
  21. Mulligan J. T., Long S. R. Induction of Rhizobium meliloti nodC expression by plant exudate requires nodD. Proc Natl Acad Sci U S A. 1985 Oct;82(19):6609–6613. doi: 10.1073/pnas.82.19.6609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Peters N. K., Frost J. W., Long S. R. A plant flavone, luteolin, induces expression of Rhizobium meliloti nodulation genes. Science. 1986 Aug 29;233(4767):977–980. doi: 10.1126/science.3738520. [DOI] [PubMed] [Google Scholar]
  23. Peters N. K., Long S. R. Alfalfa Root Exudates and Compounds which Promote or Inhibit Induction of Rhizobium meliloti Nodulation Genes. Plant Physiol. 1988 Oct;88(2):396–400. doi: 10.1104/pp.88.2.396. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Rawlings N. C., Cook S. J., Waldbillig D. Effects of the pesticides carbofuran, chlorpyrifos, dimethoate, lindane, triallate, trifluralin, 2,4-D, and pentachlorophenol on the metabolic endocrine and reproductive endocrine system in ewes. J Toxicol Environ Health A. 1998 May 8;54(1):21–36. doi: 10.1080/009841098159006. [DOI] [PubMed] [Google Scholar]
  25. Roy D., Palangat M., Chen C. W., Thomas R. D., Colerangle J., Atkinson A., Yan Z. J. Biochemical and molecular changes at the cellular level in response to exposure to environmental estrogen-like chemicals. J Toxicol Environ Health. 1997 Jan;50(1):1–29. doi: 10.1080/009841097160573. [DOI] [PubMed] [Google Scholar]
  26. Safe S. Bisphenol A and related endocrine disruptors. Toxicol Sci. 2000 Aug;56(2):251–252. doi: 10.1093/toxsci/56.2.251. [DOI] [PubMed] [Google Scholar]
  27. Schultze M., Kondorosi A. Regulation of symbiotic root nodule development. Annu Rev Genet. 1998;32:33–57. doi: 10.1146/annurev.genet.32.1.33. [DOI] [PubMed] [Google Scholar]
  28. Short P., Colborn T. Pesticide use in the U.S. and policy implications: a focus on herbicides. Toxicol Ind Health. 1999 Jan-Mar;15(1-2):240–275. doi: 10.1191/074823399678846736. [DOI] [PubMed] [Google Scholar]
  29. Sonnenschein C., Soto A. M. An updated review of environmental estrogen and androgen mimics and antagonists. J Steroid Biochem Mol Biol. 1998 Apr;65(1-6):143–150. doi: 10.1016/s0960-0760(98)00027-2. [DOI] [PubMed] [Google Scholar]
  30. Spaink H. P., Okker R. J., Wijffelman C. A., Tak T., Goosen-de Roo L., Pees E., van Brussel A. A., Lugtenberg B. J. Symbiotic properties of rhizobia containing a flavonoid-independent hybrid nodD product. J Bacteriol. 1989 Jul;171(7):4045–4053. doi: 10.1128/jb.171.7.4045-4053.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Tham D. M., Gardner C. D., Haskell W. L. Clinical review 97: Potential health benefits of dietary phytoestrogens: a review of the clinical, epidemiological, and mechanistic evidence. J Clin Endocrinol Metab. 1998 Jul;83(7):2223–2235. doi: 10.1210/jcem.83.7.4752. [DOI] [PubMed] [Google Scholar]
  32. Thornton Joseph W., Need Eleanor, Crews David. Resurrecting the ancestral steroid receptor: ancient origin of estrogen signaling. Science. 2003 Sep 19;301(5640):1714–1717. doi: 10.1126/science.1086185. [DOI] [PubMed] [Google Scholar]
  33. Tyler C. R., Jobling S., Sumpter J. P. Endocrine disruption in wildlife: a critical review of the evidence. Crit Rev Toxicol. 1998 Jul;28(4):319–361. doi: 10.1080/10408449891344236. [DOI] [PubMed] [Google Scholar]
  34. Welp G., Brümmer G. W. Effects of organic pollutants on soil microbial activity: the influence of sorption, solubility, and speciation. Ecotoxicol Environ Saf. 1999 May;43(1):83–90. doi: 10.1006/eesa.1999.1770. [DOI] [PubMed] [Google Scholar]
  35. Whitten P. L., Patisaul H. B. Cross-species and interassay comparisons of phytoestrogen action. Environ Health Perspect. 2001 Mar;109 (Suppl 1):5–20. doi: 10.1289/ehp.01109s15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Wynne-Edwards K. E. Evolutionary biology of plant defenses against herbivory and their predictive implications for endocrine disruptor susceptibility in vertebrates. Environ Health Perspect. 2001 May;109(5):443–448. doi: 10.1289/ehp.01109443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Zacharewski T. Identification and assessment of endocrine disruptors: limitations of in vivo and in vitro assays. Environ Health Perspect. 1998 Apr;106 (Suppl 2):577–582. doi: 10.1289/ehp.98106577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Zahran H. H. Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol Mol Biol Rev. 1999 Dec;63(4):968-89, table of contents. doi: 10.1128/mmbr.63.4.968-989.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. van Rhijn P., Vanderleyden J. The Rhizobium-plant symbiosis. Microbiol Rev. 1995 Mar;59(1):124–142. doi: 10.1128/mr.59.1.124-142.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES