Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2004 May;112(6):687–694. doi: 10.1289/ehp.6355

Magnetic-field-induced DNA strand breaks in brain cells of the rat.

Henry Lai 1, Narendra P Singh 1
PMCID: PMC1241963  PMID: 15121512

Abstract

In previous research, we found that rats acutely (2 hr) exposed to a 60-Hz sinusoidal magnetic field at intensities of 0.1-0.5 millitesla (mT) showed increases in DNA single- and double-strand breaks in their brain cells. Further research showed that these effects could be blocked by pretreating the rats with the free radical scavengers melatonin and N-tert-butyl-alpha-phenylnitrone, suggesting the involvement of free radicals. In the present study, effects of magnetic field exposure on brain cell DNA in the rat were further investigated. Exposure to a 60-Hz magnetic field at 0.01 mT for 24 hr caused a significant increase in DNA single- and double-strand breaks. Prolonging the exposure to 48 hr caused a larger increase. This indicates that the effect is cumulative. In addition, treatment with Trolox (a vitamin E analog) or 7-nitroindazole (a nitric oxide synthase inhibitor) blocked magnetic-field-induced DNA strand breaks. These data further support a role of free radicals on the effects of magnetic fields. Treatment with the iron chelator deferiprone also blocked the effects of magnetic fields on brain cell DNA, suggesting the involvement of iron. Acute magnetic field exposure increased apoptosis and necrosis of brain cells in the rat. We hypothesize that exposure to a 60-Hz magnetic field initiates an iron-mediated process (e.g., the Fenton reaction) that increases free radical formation in brain cells, leading to DNA strand breaks and cell death. This hypothesis could have an important implication for the possible health effects associated with exposure to extremely low-frequency magnetic fields in the public and occupational environments.

Full Text

The Full Text of this article is available as a PDF (146.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adey R. Jim Henry's world revisited--environmental "stress" at the psychophysiological and the molecular levels. Acta Physiol Scand Suppl. 1997;640:176–179. [PubMed] [Google Scholar]
  2. Ahuja Y. R., Vijayashree B., Saran R., Jayashri E. L., Manoranjani J. K., Bhargava S. C. In vitro effects of low-level, low-frequency electromagnetic fields on DNA damage in human leucocytes by comet assay. Indian J Biochem Biophys. 1999 Oct;36(5):318–322. [PubMed] [Google Scholar]
  3. Altman S. A., Zastawny T. H., Randers-Eichhorn L., Cacciuttolo M. A., Akman S. A., Dizdaroglu M., Rao G. Formation of DNA-protein cross-links in cultured mammalian cells upon treatment with iron ions. Free Radic Biol Med. 1995 Dec;19(6):897–902. doi: 10.1016/0891-5849(95)00095-f. [DOI] [PubMed] [Google Scholar]
  4. Beckman K. B., Ames B. N. Oxidative decay of DNA. J Biol Chem. 1997 Aug 8;272(32):19633–19636. doi: 10.1074/jbc.272.32.19633. [DOI] [PubMed] [Google Scholar]
  5. Blumenthal N. C., Ricci J., Breger L., Zychlinsky A., Solomon H., Chen G. G., Kuznetsov D., Dorfman R. Effects of low-intensity AC and/or DC electromagnetic fields on cell attachment and induction of apoptosis. Bioelectromagnetics. 1997;18(3):264–272. doi: 10.1002/(sici)1521-186x(1997)18:3<264::aid-bem10>3.0.co;2-p. [DOI] [PubMed] [Google Scholar]
  6. Davanipour Z., Sobel E., Bowman J. D., Qian Z., Will A. D. Amyotrophic lateral sclerosis and occupational exposure to electromagnetic fields. Bioelectromagnetics. 1997;18(1):28–35. doi: 10.1002/(sici)1521-186x(1997)18:1<28::aid-bem6>3.0.co;2-7. [DOI] [PubMed] [Google Scholar]
  7. Eveson R. W., Timmel C. R., Brocklehurst B., Hore P. J., McLauchlan K. A. The effects of weak magnetic fields on radical recombination reactions in micelles. Int J Radiat Biol. 2000 Nov;76(11):1509–1522. doi: 10.1080/09553000050176270. [DOI] [PubMed] [Google Scholar]
  8. Fairbairn D. W., O'Neill K. L. The effect of electromagnetic field exposure on the formation of DNA single strand breaks in human cells. Cell Mol Biol (Noisy-le-grand) 1994 Jun;40(4):561–567. [PubMed] [Google Scholar]
  9. Farber J. L. Mechanisms of cell injury by activated oxygen species. Environ Health Perspect. 1994 Dec;102 (Suppl 10):17–24. doi: 10.1289/ehp.94102s1017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Felley-Bosco E. Role of nitric oxide in genotoxicity: implication for carcinogenesis. Cancer Metastasis Rev. 1998 Mar;17(1):25–37. doi: 10.1023/a:1005948420548. [DOI] [PubMed] [Google Scholar]
  11. Feychting Maria, Jonsson Fredrik, Pedersen Nancy L., Ahlbom Anders. Occupational magnetic field exposure and neurodegenerative disease. Epidemiology. 2003 Jul;14(4):413–428. doi: 10.1097/01.EDE.0000071409.23291.7b. [DOI] [PubMed] [Google Scholar]
  12. Fiorani M., Biagiarelli B., Vetrano F., Guidi G., Dachà M., Stocchi V. In vitro effects of 50 Hz magnetic fields on oxidatively damaged rabbit red blood cells. Bioelectromagnetics. 1997;18(2):125–131. [PubMed] [Google Scholar]
  13. Floyd R. A. DNA-ferrous iron catalyzed hydroxyl free radical formation from hydrogen peroxide. Biochem Biophys Res Commun. 1981 Apr 30;99(4):1209–1215. doi: 10.1016/0006-291x(81)90748-8. [DOI] [PubMed] [Google Scholar]
  14. Forrest V. J., Kang Y. H., McClain D. E., Robinson D. H., Ramakrishnan N. Oxidative stress-induced apoptosis prevented by Trolox. Free Radic Biol Med. 1994 Jun;16(6):675–684. doi: 10.1016/0891-5849(94)90182-1. [DOI] [PubMed] [Google Scholar]
  15. Francois C., Nguyen-Legros J., Percheron G. Topographical and cytological localization of iron in rat and monkey brains. Brain Res. 1981 Jun 29;215(1-2):317–322. doi: 10.1016/0006-8993(81)90510-2. [DOI] [PubMed] [Google Scholar]
  16. Fredenburg A. M., Sethi R. K., Allen D. D., Yokel R. A. The pharmacokinetics and blood-brain barrier permeation of the chelators 1,2 dimethly-, 1,2 diethyl-, and 1-[ethan-1'ol]-2-methyl-3-hydroxypyridin-4-one in the rat. Toxicology. 1996 Apr 30;108(3):191–199. doi: 10.1016/0300-483x(95)03301-u. [DOI] [PubMed] [Google Scholar]
  17. Gerber M. R., Connor J. R. Do oligodendrocytes mediate iron regulation in the human brain? Ann Neurol. 1989 Jul;26(1):95–98. doi: 10.1002/ana.410260115. [DOI] [PubMed] [Google Scholar]
  18. Grundler W., Kaiser F., Keilmann F., Walleczek J. Mechanisms of electromagnetic interaction with cellular systems. Naturwissenschaften. 1992 Dec;79(12):551–559. doi: 10.1007/BF01131411. [DOI] [PubMed] [Google Scholar]
  19. Håkansson Niclas, Gustavsson Per, Johansen Christoffer, Floderus Birgitta. Neurodegenerative diseases in welders and other workers exposed to high levels of magnetic fields. Epidemiology. 2003 Jul;14(4):420–428. doi: 10.1097/01.EDE.0000078446.76859.c9. [DOI] [PubMed] [Google Scholar]
  20. Ismael S. J., Callera F., Garcia A. B., Baffa O., Falcão R. P. Increased dexamethasone-induced apoptosis of thymocytes from mice exposed to long-term extremely low frequency magnetic fields. Bioelectromagnetics. 1998;19(2):131–135. doi: 10.1002/(sici)1521-186x(1998)19:2<131::aid-bem13>3.0.co;2-t. [DOI] [PubMed] [Google Scholar]
  21. Ivancsits Sabine, Diem Elisabeth, Jahn Oswald, Rüdiger Hugo W. Age-related effects on induction of DNA strand breaks by intermittent exposure to electromagnetic fields. Mech Ageing Dev. 2003 Jul;124(7):847–850. doi: 10.1016/s0047-6374(03)00125-8. [DOI] [PubMed] [Google Scholar]
  22. Ivancsits Sabine, Diem Elisabeth, Jahn Oswald, Rüdiger Hugo W. Intermittent extremely low frequency electromagnetic fields cause DNA damage in a dose-dependent way. Int Arch Occup Environ Health. 2003 Jun 12;76(6):431–436. doi: 10.1007/s00420-003-0446-5. [DOI] [PubMed] [Google Scholar]
  23. Ivancsits Sabine, Diem Elisabeth, Pilger Alexander, Rüdiger Hugo W., Jahn Oswald. Induction of DNA strand breaks by intermittent exposure to extremely-low-frequency electromagnetic fields in human diploid fibroblasts. Mutat Res. 2002 Aug 26;519(1-2):1–13. doi: 10.1016/s1383-5718(02)00109-2. [DOI] [PubMed] [Google Scholar]
  24. Jajte J., Zmyślony M., Palus J., Dziubałtowska E., Rajkowska E. Protective effect of melatonin against in vitro iron ions and 7 mT 50 Hz magnetic field-induced DNA damage in rat lymphocytes. Mutat Res. 2001 Nov 1;483(1-2):57–64. doi: 10.1016/s0027-5107(01)00230-5. [DOI] [PubMed] [Google Scholar]
  25. Johansen C., Olsen J. H. Mortality from amyotrophic lateral sclerosis, other chronic disorders, and electric shocks among utility workers. Am J Epidemiol. 1998 Aug 15;148(4):362–368. doi: 10.1093/oxfordjournals.aje.a009654. [DOI] [PubMed] [Google Scholar]
  26. Kalisch B. E., Connop B. P., Jhamandas K., Beninger R. J., Boegman R. J. Differential action of 7-nitro indazole on rat brain nitric oxide synthase. Neurosci Lett. 1996 Nov 22;219(2):75–78. doi: 10.1016/s0304-3940(96)13194-3. [DOI] [PubMed] [Google Scholar]
  27. Katsir G., Parola A. H. Enhanced proliferation caused by a low frequency weak magnetic field in chick embryo fibroblasts is suppressed by radical scavengers. Biochem Biophys Res Commun. 1998 Nov 27;252(3):753–756. doi: 10.1006/bbrc.1998.9579. [DOI] [PubMed] [Google Scholar]
  28. Khadir R., Morgan J. L., Murray J. J. Effects of 60 Hz magnetic field exposure on polymorphonuclear leukocyte activation. Biochim Biophys Acta. 1999 Oct 18;1472(1-2):359–367. doi: 10.1016/s0304-4165(99)00142-7. [DOI] [PubMed] [Google Scholar]
  29. Kontoghiorghes G. J. Comparative efficacy and toxicity of desferrioxamine, deferiprone and other iron and aluminium chelating drugs. Toxicol Lett. 1995 Oct;80(1-3):1–18. doi: 10.1016/0378-4274(95)03415-h. [DOI] [PubMed] [Google Scholar]
  30. Lai H., Carino M. A., Horita A., Guy A. W. Effects of a 60 Hz magnetic field on central cholinergic systems of the rat. Bioelectromagnetics. 1993;14(1):5–15. doi: 10.1002/bem.2250140104. [DOI] [PubMed] [Google Scholar]
  31. Lai H., Singh N. P. Acute exposure to a 60 Hz magnetic field increases DNA strand breaks in rat brain cells. Bioelectromagnetics. 1997;18(2):156–165. [PubMed] [Google Scholar]
  32. Lai H., Singh N. P. Melatonin and N-tert-butyl-alpha-phenylnitrone block 60-Hz magnetic field-induced DNA single and double strand breaks in rat brain cells. J Pineal Res. 1997 Apr;22(3):152–162. doi: 10.1111/j.1600-079x.1997.tb00317.x. [DOI] [PubMed] [Google Scholar]
  33. Lloyd D. R., Phillips D. H., Carmichael P. L. Generation of putative intrastrand cross-links and strand breaks in DNA by transition metal ion-mediated oxygen radical attack. Chem Res Toxicol. 1997 Apr;10(4):393–400. doi: 10.1021/tx960158q. [DOI] [PubMed] [Google Scholar]
  34. Lourencini da Silva R., Albano F., Lopes dos Santos L. R., Tavares A. D., Jr, Felzenszwalb I. The effect of electromagnetic field exposure on the formation of DNA lesions. Redox Rep. 2000;5(5):299–301. doi: 10.1179/135100000101535843. [DOI] [PubMed] [Google Scholar]
  35. McNamee J. P., Bellier P. V., McLean J. R. N., Marro L., Gajda G. B., Thansandote A. DNA damage and apoptosis in the immature mouse cerebellum after acute exposure to a 1 mT, 60 Hz magnetic field. Mutat Res. 2002 Jan 15;513(1-2):121–133. doi: 10.1016/s1383-5718(01)00302-3. [DOI] [PubMed] [Google Scholar]
  36. Mello Filho A. C., Meneghini R. In vivo formation of single-strand breaks in DNA by hydrogen peroxide is mediated by the Haber-Weiss reaction. Biochim Biophys Acta. 1984 Feb 24;781(1-2):56–63. doi: 10.1016/0167-4781(84)90123-4. [DOI] [PubMed] [Google Scholar]
  37. Meneghini R. Iron homeostasis, oxidative stress, and DNA damage. Free Radic Biol Med. 1997;23(5):783–792. doi: 10.1016/s0891-5849(97)00016-6. [DOI] [PubMed] [Google Scholar]
  38. Miyakoshi J., Yoshida M., Shibuya K., Hiraoka M. Exposure to strong magnetic fields at power frequency potentiates X-ray-induced DNA strand breaks. J Radiat Res. 2000 Sep;41(3):293–302. doi: 10.1269/jrr.41.293. [DOI] [PubMed] [Google Scholar]
  39. Moore P. K., Bland-Ward P. A. 7-nitroindazole: an inhibitor of nitric oxide synthase. Methods Enzymol. 1996;268:393–398. doi: 10.1016/s0076-6879(96)68041-0. [DOI] [PubMed] [Google Scholar]
  40. Noonan Curtis W., Reif John S., Yost Michael, Touchstone Jennifer. Occupational exposure to magnetic fields in case-referent studies of neurodegenerative diseases. Scand J Work Environ Health. 2002 Feb;28(1):42–48. doi: 10.5271/sjweh.645. [DOI] [PubMed] [Google Scholar]
  41. Reese J. A., Jostes R. F., Frazier M. E. Exposure of mammalian cells to 60-Hz magnetic or electric fields: analysis for DNA single-strand breaks. Bioelectromagnetics. 1988;9(3):237–247. doi: 10.1002/bem.2250090305. [DOI] [PubMed] [Google Scholar]
  42. Reif D. W., Simmons R. D. Nitric oxide mediates iron release from ferritin. Arch Biochem Biophys. 1990 Dec;283(2):537–541. doi: 10.1016/0003-9861(90)90680-w. [DOI] [PubMed] [Google Scholar]
  43. Richardson D. R., Ponka P. The molecular mechanisms of the metabolism and transport of iron in normal and neoplastic cells. Biochim Biophys Acta. 1997 Mar 14;1331(1):1–40. doi: 10.1016/s0304-4157(96)00014-7. [DOI] [PubMed] [Google Scholar]
  44. Rothkamm Kai, Löbrich Markus. Evidence for a lack of DNA double-strand break repair in human cells exposed to very low x-ray doses. Proc Natl Acad Sci U S A. 2003 Apr 4;100(9):5057–5062. doi: 10.1073/pnas.0830918100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Roy S., Noda Y., Eckert V., Traber M. G., Mori A., Liburdy R., Packer L. The phorbol 12-myristate 13-acetate (PMA)-induced oxidative burst in rat peritoneal neutrophils is increased by a 0.1 mT (60 Hz) magnetic field. FEBS Lett. 1995 Dec 4;376(3):164–166. doi: 10.1016/0014-5793(95)01266-x. [DOI] [PubMed] [Google Scholar]
  46. Savitz D. A., Checkoway H., Loomis D. P. Magnetic field exposure and neurodegenerative disease mortality among electric utility workers. Epidemiology. 1998 Jul;9(4):398–404. [PubMed] [Google Scholar]
  47. Simkó M., Kriehuber R., Weiss D. G., Luben R. A. Effects of 50 Hz EMF exposure on micronucleus formation and apoptosis in transformed and nontransformed human cell lines. Bioelectromagnetics. 1998;19(2):85–91. [PubMed] [Google Scholar]
  48. Simonian N. A., Coyle J. T. Oxidative stress in neurodegenerative diseases. Annu Rev Pharmacol Toxicol. 1996;36:83–106. doi: 10.1146/annurev.pa.36.040196.000503. [DOI] [PubMed] [Google Scholar]
  49. Singh N. P. A rapid method for the preparation of single-cell suspensions from solid tissues. Cytometry. 1998 Mar 1;31(3):229–232. doi: 10.1002/(sici)1097-0320(19980301)31:3<229::aid-cyto10>3.0.co;2-t. [DOI] [PubMed] [Google Scholar]
  50. Singh N. P. A simple method for accurate estimation of apoptotic cells. Exp Cell Res. 2000 Apr 10;256(1):328–337. doi: 10.1006/excr.2000.4810. [DOI] [PubMed] [Google Scholar]
  51. Singh N. P., Graham M. M., Singh V., Khan A. Induction of DNA single-strand breaks in human lymphocytes by low doses of gamma-rays. Int J Radiat Biol. 1995 Nov;68(5):563–569. doi: 10.1080/09553009514551551. [DOI] [PubMed] [Google Scholar]
  52. Singh N. P., Stephens R. E. Microgel electrophoresis: sensitivity, mechanisms, and DNA electrostretching. Mutat Res. 1997 Mar 12;383(2):167–175. doi: 10.1016/s0921-8777(96)00056-0. [DOI] [PubMed] [Google Scholar]
  53. Singh N. P., Stephens R. E., Schneider E. L. Modifications of alkaline microgel electrophoresis for sensitive detection of DNA damage. Int J Radiat Biol. 1994 Jul;66(1):23–28. doi: 10.1080/09553009414550911. [DOI] [PubMed] [Google Scholar]
  54. Singh N., Lai H. 60 Hz magnetic field exposure induces DNA crosslinks in rat brain cells. Mutat Res. 1998 May 25;400(1-2):313–320. doi: 10.1016/s0027-5107(98)00017-7. [DOI] [PubMed] [Google Scholar]
  55. Sobel E., Davanipour Z., Sulkava R., Erkinjuntti T., Wikstrom J., Henderson V. W., Buckwalter G., Bowman J. D., Lee P. J. Occupations with exposure to electromagnetic fields: a possible risk factor for Alzheimer's disease. Am J Epidemiol. 1995 Sep 1;142(5):515–524. doi: 10.1093/oxfordjournals.aje.a117669. [DOI] [PubMed] [Google Scholar]
  56. Stohs S. J., Bagchi D. Oxidative mechanisms in the toxicity of metal ions. Free Radic Biol Med. 1995 Feb;18(2):321–336. doi: 10.1016/0891-5849(94)00159-h. [DOI] [PubMed] [Google Scholar]
  57. Suzuki Y. J., Forman H. J., Sevanian A. Oxidants as stimulators of signal transduction. Free Radic Biol Med. 1997;22(1-2):269–285. doi: 10.1016/s0891-5849(96)00275-4. [DOI] [PubMed] [Google Scholar]
  58. Svedenstål B. M., Johanson K. J., Mattsson M. O., Paulsson L. E. DNA damage, cell kinetics and ODC activities studied in CBA mice exposed to electromagnetic fields generated by transmission lines. In Vivo. 1999 Nov-Dec;13(6):507–513. [PubMed] [Google Scholar]
  59. Svedenstål B. M., Johanson K. J., Mild K. H. DNA damage induced in brain cells of CBA mice exposed to magnetic fields. In Vivo. 1999 Nov-Dec;13(6):551–552. [PubMed] [Google Scholar]
  60. Tenforde T. S., Kaune W. T. Interaction of extremely low frequency electric and magnetic fields with humans. Health Phys. 1987 Dec;53(6):585–606. doi: 10.1097/00004032-198712000-00002. [DOI] [PubMed] [Google Scholar]
  61. Yoshikawa T, Tanigawa M, Tanigawa T, Imai A, Hongo H, Kondo M. Enhancement of nitric oxide generation by low frequency electromagnetic field. Pathophysiology. 2000 Jul;7(2):131–135. doi: 10.1016/s0928-4680(00)00040-7. [DOI] [PubMed] [Google Scholar]
  62. Zmyślony M., Palus J., Jajte J., Dziubaltowska E., Rajkowska E. DNA damage in rat lymphocytes treated in vitro with iron cations and exposed to 7 mT magnetic fields (static or 50 Hz). Mutat Res. 2000 Sep 20;453(1):89–96. doi: 10.1016/s0027-5107(00)00094-4. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES