Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2004 May;112(6):695–702. doi: 10.1289/ehp.112-1241964

Interlaboratory comparison of four in vitro assays for assessing androgenic and antiandrogenic activity of environmental chemicals.

Wolfgang Körner 1, Anne Marie Vinggaard 1, Béatrice Térouanne 1, Risheng Ma 1, Carise Wieloch 1, Margret Schlumpf 1, Charles Sultan 1, Ana M Soto 1
PMCID: PMC1241964  PMID: 15121513

Abstract

We evaluated and compared four in vitro assays to detect androgen agonists and antagonists in an international interlaboratory study. Laboratory 1 used a cell proliferation assay (assay 1) with human mammary carcinoma cells stably transfected with human androgen receptor. The other laboratories used reporter gene assays, two based on stably transfected human prostate carcinoma cells (assay 2) or human mammary carcinoma cells (assay 4), and the third based on transient transfection of Chinese hamster ovary cells (assay 3). Four laboratories received four coded compounds and two controls: two steroidal androgens, two antiandrogens, an androgenic control, 5alpha-dihydrotestosterone (DHT), and an antiandrogenic control, bicalutamide (ICI 176,334). All laboratories correctly detected the androgenic activity of 4-androsten-3,17-dione and 17alpha-methyltestosterone. For both compounds, the calculated androgenic potencies relative to the positive control (RAPs) remained within one order of magnitude. However, laboratory 3 calculated a 50-fold higher RAP for 4-androsten-3,17-dione. All assays detected and quantified the antiandrogenic effect of vinclozolin [median inhibitory concentration (IC50) values ranging from 1.1 times symbol 10(-7) M to 4.7 times symbol 10(-7) M]. In assays 2 and 3, vinclozolin showed partial androgenic activity at the highest concentrations tested. For vinclozolin, calculated antiandrogenic potencies relative to bicalutamide (RAAPs) differed no more than a factor of 10, and IC50 values matched those of bicalutamide. Similarly, we found antiandrogenic activity for tris-(4-chlorophenyl)methanol. RAAP values were between 0.086 and 0.37. Three assays showed cytotoxicity for this compound at or above 1 times symbol 10(-5) M. In summary, all assays proved sensitive screening tools to detect and quantify androgen receptor-mediated androgenic and antiandrogenic effects of these chemicals accurately, with coefficients of variation between 8 and 90%.

Full Text

The Full Text of this article is available as a PDF (224.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersen H. R., Andersson A. M., Arnold S. F., Autrup H., Barfoed M., Beresford N. A., Bjerregaard P., Christiansen L. B., Gissel B., Hummel R. Comparison of short-term estrogenicity tests for identification of hormone-disrupting chemicals. Environ Health Perspect. 1999 Feb;107 (Suppl 1):89–108. doi: 10.1289/ehp.99107s189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Breithofer A., Graumann K., Scicchitano M. S., Karathanasis S. K., Butt T. R., Jungbauer A. Regulation of human estrogen receptor by phytoestrogens in yeast and human cells. J Steroid Biochem Mol Biol. 1998 Dec;67(5-6):421–429. doi: 10.1016/s0960-0760(98)00139-3. [DOI] [PubMed] [Google Scholar]
  3. Brzozowski A. M., Pike A. C., Dauter Z., Hubbard R. E., Bonn T., Engström O., Ohman L., Greene G. L., Gustafsson J. A., Carlquist M. Molecular basis of agonism and antagonism in the oestrogen receptor. Nature. 1997 Oct 16;389(6652):753–758. doi: 10.1038/39645. [DOI] [PubMed] [Google Scholar]
  4. Castagnetta L. A., Carruba G., Traina A., Granata O. M., Markus M., Pavone-Macaluso M., Blomquist C. H., Adamski J. Expression of different 17beta-hydroxysteroid dehydrogenase types and their activities in human prostate cancer cells. Endocrinology. 1997 Nov;138(11):4876–4882. doi: 10.1210/endo.138.11.5497. [DOI] [PubMed] [Google Scholar]
  5. Castagnetta L., Granata O. M., Polito L., Blasi L., Cannella S., Carruba G. Different conversion metabolic rates of testosterone are associated to hormone-sensitive status and -response of human prostate cancer cells. J Steroid Biochem Mol Biol. 1994 Jun;49(4-6):351–357. doi: 10.1016/0960-0760(94)90279-8. [DOI] [PubMed] [Google Scholar]
  6. Chang C. S., Liao S. S. Topographic recognition of cyclic hydrocarbons and related compounds by receptors for androgens, estrogens, and glucocorticoids. J Steroid Biochem. 1987;27(1-3):123–131. doi: 10.1016/0022-4731(87)90303-7. [DOI] [PubMed] [Google Scholar]
  7. Colborn T., vom Saal F. S., Soto A. M. Developmental effects of endocrine-disrupting chemicals in wildlife and humans. Environ Health Perspect. 1993 Oct;101(5):378–384. doi: 10.1289/ehp.93101378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cook J. C., Mullin L. S., Frame S. R., Biegel L. B. Investigation of a mechanism for Leydig cell tumorigenesis by linuron in rats. Toxicol Appl Pharmacol. 1993 Apr;119(2):195–204. doi: 10.1006/taap.1993.1060. [DOI] [PubMed] [Google Scholar]
  9. Dalton J. T., Mukherjee A., Zhu Z., Kirkovsky L., Miller D. D. Discovery of nonsteroidal androgens. Biochem Biophys Res Commun. 1998 Mar 6;244(1):1–4. doi: 10.1006/bbrc.1998.8209. [DOI] [PubMed] [Google Scholar]
  10. Eil C., Nisula B. C. The binding properties of pyrethroids to human skin fibroblast androgen receptors and to sex hormone binding globulin. J Steroid Biochem. 1990 Mar;35(3-4):409–414. doi: 10.1016/0022-4731(90)90248-q. [DOI] [PubMed] [Google Scholar]
  11. Fang H., Tong W., Perkins R., Soto A. M., Prechtl N. V., Sheehan D. M. Quantitative comparisons of in vitro assays for estrogenic activities. Environ Health Perspect. 2000 Aug;108(8):723–729. doi: 10.1289/ehp.00108723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gimeno S., Gerritsen A., Bowmer T., Komen H. Feminization of male carp. Nature. 1996 Nov 21;384(6606):221–222. doi: 10.1038/384221a0. [DOI] [PubMed] [Google Scholar]
  13. Gray L. E., Jr, Ostby J. S., Kelce W. R. Developmental effects of an environmental antiandrogen: the fungicide vinclozolin alters sex differentiation of the male rat. Toxicol Appl Pharmacol. 1994 Nov;129(1):46–52. doi: 10.1006/taap.1994.1227. [DOI] [PubMed] [Google Scholar]
  14. Jobling S., Reynolds T., White R., Parker M. G., Sumpter J. P. A variety of environmentally persistent chemicals, including some phthalate plasticizers, are weakly estrogenic. Environ Health Perspect. 1995 Jun;103(6):582–587. doi: 10.1289/ehp.95103582. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kelce W. R., Monosson E., Gamcsik M. P., Laws S. C., Gray L. E., Jr Environmental hormone disruptors: evidence that vinclozolin developmental toxicity is mediated by antiandrogenic metabolites. Toxicol Appl Pharmacol. 1994 Jun;126(2):276–285. doi: 10.1006/taap.1994.1117. [DOI] [PubMed] [Google Scholar]
  16. Kelce W. R., Stone C. R., Laws S. C., Gray L. E., Kemppainen J. A., Wilson E. M. Persistent DDT metabolite p,p'-DDE is a potent androgen receptor antagonist. Nature. 1995 Jun 15;375(6532):581–585. doi: 10.1038/375581a0. [DOI] [PubMed] [Google Scholar]
  17. Klotz D. M., Beckman B. S., Hill S. M., McLachlan J. A., Walters M. R., Arnold S. F. Identification of environmental chemicals with estrogenic activity using a combination of in vitro assays. Environ Health Perspect. 1996 Oct;104(10):1084–1089. doi: 10.1289/ehp.961041084. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Koh E., Kanaya J., Namiki M. Adrenal steroids in human prostatic cancer cell lines. Arch Androl. 2001 Mar-Apr;46(2):117–125. doi: 10.1080/01485010151094010. [DOI] [PubMed] [Google Scholar]
  19. Körner W., Hanf V., Schuller W., Bartsch H., Zwirner M., Hagenmaier H. Validation and application of a rapid in vitro assay for assessing the estrogenic potency of halogenated phenolic chemicals. Chemosphere. 1998 Oct-Nov;37(9-12):2395–2407. doi: 10.1016/s0045-6535(98)00297-5. [DOI] [PubMed] [Google Scholar]
  20. Ma Risheng, Cotton Bea, Lichtensteiger Walter, Schlumpf Margret. UV filters with antagonistic action at androgen receptors in the MDA-kb2 cell transcriptional-activation assay. Toxicol Sci. 2003 May 2;74(1):43–50. doi: 10.1093/toxsci/kfg102. [DOI] [PubMed] [Google Scholar]
  21. Miksicek R. J. Interaction of naturally occurring nonsteroidal estrogens with expressed recombinant human estrogen receptor. J Steroid Biochem Mol Biol. 1994 Jun;49(2-3):153–160. doi: 10.1016/0960-0760(94)90005-1. [DOI] [PubMed] [Google Scholar]
  22. Miller D., Wheals B. B., Beresford N., Sumpter J. P. Estrogenic activity of phenolic additives determined by an in vitro yeast bioassay. Environ Health Perspect. 2001 Feb;109(2):133–138. doi: 10.1289/ehp.109-1240632. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Milligan S. R., Balasubramanian A. V., Kalita J. C. Relative potency of xenobiotic estrogens in an acute in vivo mammalian assay. Environ Health Perspect. 1998 Jan;106(1):23–26. doi: 10.1289/ehp.9810623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Nagel S. C., vom Saal F. S., Thayer K. A., Dhar M. G., Boechler M., Welshons W. V. Relative binding affinity-serum modified access (RBA-SMA) assay predicts the relative in vivo bioactivity of the xenoestrogens bisphenol A and octylphenol. Environ Health Perspect. 1997 Jan;105(1):70–76. doi: 10.1289/ehp.9710570. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Nellemann Christine, Dalgaard Majken, Lam Henrik Rye, Vinggaard Anne Marie. The combined effects of vinclozolin and procymidone do not deviate from expected additivity in vitro and in vivo. Toxicol Sci. 2003 Feb;71(2):251–262. doi: 10.1093/toxsci/71.2.251. [DOI] [PubMed] [Google Scholar]
  26. Paris Françoise, Balaguer Patrick, Térouanne Béatrice, Servant Nadège, Lacoste Caroline, Cravedi Jean-Pierre, Nicolas Jean-Claude, Sultan Charles. Phenylphenols, biphenols, bisphenol-A and 4-tert-octylphenol exhibit alpha and beta estrogen activities and antiandrogen activity in reporter cell lines. Mol Cell Endocrinol. 2002 Jul 31;193(1-2):43–49. doi: 10.1016/s0303-7207(02)00094-1. [DOI] [PubMed] [Google Scholar]
  27. Schlumpf M., Cotton B., Conscience M., Haller V., Steinmann B., Lichtensteiger W. In vitro and in vivo estrogenicity of UV screens. Environ Health Perspect. 2001 Mar;109(3):239–244. doi: 10.1289/ehp.01109239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Soto A. M., Justicia H., Wray J. W., Sonnenschein C. p-Nonyl-phenol: an estrogenic xenobiotic released from "modified" polystyrene. Environ Health Perspect. 1991 May;92:167–173. doi: 10.1289/ehp.9192167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Soto A. M., Sonnenschein C., Chung K. L., Fernandez M. F., Olea N., Serrano F. O. The E-SCREEN assay as a tool to identify estrogens: an update on estrogenic environmental pollutants. Environ Health Perspect. 1995 Oct;103 (Suppl 7):113–122. doi: 10.1289/ehp.95103s7113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Szelei J., Jimenez J., Soto A. M., Luizzi M. F., Sonnenschein C. Androgen-induced inhibition of proliferation in human breast cancer MCF7 cells transfected with androgen receptor. Endocrinology. 1997 Apr;138(4):1406–1412. doi: 10.1210/endo.138.4.5047. [DOI] [PubMed] [Google Scholar]
  31. Szuster-Ciesielska A., Stachura A., Słotwińska M., Kamińska T., Sniezko R., Paduch R., Abramczyk D., Filar J., Kandefer-Szerszeń M. The inhibitory effect of zinc on cadmium-induced cell apoptosis and reactive oxygen species (ROS) production in cell cultures. Toxicology. 2000 Apr 14;145(2-3):159–171. doi: 10.1016/s0300-483x(00)00144-x. [DOI] [PubMed] [Google Scholar]
  32. Térouanne B., Tahiri B., Georget V., Belon C., Poujol N., Avances C., Orio F., Jr, Balaguer P., Sultan C. A stable prostatic bioluminescent cell line to investigate androgen and antiandrogen effects. Mol Cell Endocrinol. 2000 Feb 25;160(1-2):39–49. doi: 10.1016/s0303-7207(99)00251-8. [DOI] [PubMed] [Google Scholar]
  33. Vinggaard A. M., Joergensen E. C., Larsen J. C. Rapid and sensitive reporter gene assays for detection of antiandrogenic and estrogenic effects of environmental chemicals. Toxicol Appl Pharmacol. 1999 Mar 1;155(2):150–160. doi: 10.1006/taap.1998.8598. [DOI] [PubMed] [Google Scholar]
  34. Vinggaard Anne Marie, Nellemann Christine, Dalgaard Majken, Jørgensen Eva Bonefeld, Andersen Helle Raun. Antiandrogenic effects in vitro and in vivo of the fungicide prochloraz. Toxicol Sci. 2002 Oct;69(2):344–353. doi: 10.1093/toxsci/69.2.344. [DOI] [PubMed] [Google Scholar]
  35. Wilson Vickie S., Bobseine Kathy, Lambright Christy R., Gray L. E., Jr A novel cell line, MDA-kb2, that stably expresses an androgen- and glucocorticoid-responsive reporter for the detection of hormone receptor agonists and antagonists. Toxicol Sci. 2002 Mar;66(1):69–81. doi: 10.1093/toxsci/66.1.69. [DOI] [PubMed] [Google Scholar]
  36. Wong C., Kelce W. R., Sar M., Wilson E. M. Androgen receptor antagonist versus agonist activities of the fungicide vinclozolin relative to hydroxyflutamide. J Biol Chem. 1995 Aug 25;270(34):19998–20003. doi: 10.1074/jbc.270.34.19998. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES