Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2004 May;112(6):754–759. doi: 10.1289/ehp.5955

Predictors of personal polycyclic aromatic hydrocarbon exposures among pregnant minority women in New York City.

Cathryn C Tonne 1, Robin M Whyatt 1, David E Camann 1, Frederica P Perera 1, Patrick L Kinney 1
PMCID: PMC1241972  PMID: 15121521

Abstract

As part of a multiyear birth-cohort study examining the roles of pre- and postnatal environmental exposures on developmental deficits and asthma among children, we measured personal exposures to polycyclic aromatic hydrocarbons (PAHs) among 348 pregnant women in northern Manhattan and the South Bronx, New York. Nonsmoking African-American or Dominican women were identified and recruited into the study. During the third trimester of pregnancy, each subject wore a personal air monitor for 48 hr to determine exposure levels to nine PAH compounds. In this study, we examined levels of exposures to PAHs and tested for associations with potential predictor variables collected from questionnaires addressing socioeconomic factors and day-to-day activities during pregnancy as well as activities and environmental exposures during the 48-hr monitoring period. Reliable personal monitoring data for women who did not smoke during the monitoring period were available for 344 of 348 subjects. Mean PAH concentrations ranged from 0.06 ng/m3 for dibenz[a,h]anthracene to 4.1 ng/m3 for pyrene; mean benzo[a]pyrene concentration was 0.50 ng/m3. As found in previous studies, concentrations of most PAHs were higher in winter than in summer. Multiple linear regression analysis revealed associations between personal PAH exposures and several questionnaire variables, including time spent outdoors, residential heating, and indoor burning of incense. This is the largest study to date characterizing personal exposures to PAHs, a ubiquitous class of carcinogenic air contaminants in urban environments, and is unique in its focus on pregnant minority women.

Full Text

The Full Text of this article is available as a PDF (123.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Angerer J., Mannschreck C., Gündel J. Occupational exposure to polycyclic aromatic hydrocarbons in a graphite-electrode producing plant: biological monitoring of 1-hydroxypyrene and monohydroxylated metabolites of phenanthrene. Int Arch Occup Environ Health. 1997;69(5):323–331. doi: 10.1007/s004200050155. [DOI] [PubMed] [Google Scholar]
  2. Buckley T. J., Waldman J. M., Dhara R., Greenberg A., Ouyang Z., Lioy P. J. An assessment of a urinary biomarker for total human environmental exposure to benzo[a]pyrene. Int Arch Occup Environ Health. 1995;67(4):257–266. doi: 10.1007/BF00409408. [DOI] [PubMed] [Google Scholar]
  3. Chuang J. C., Callahan P. J., Lyu C. W., Wilson N. K. Polycyclic aromatic hydrocarbon exposures of children in low-income families. J Expo Anal Environ Epidemiol. 1999 Mar-Apr;9(2):85–98. doi: 10.1038/sj.jea.7500003. [DOI] [PubMed] [Google Scholar]
  4. Cupitt L. T., Glen W. G., Lewtas J. Exposure and risk from ambient particle-bound pollution in an airshed dominated by residential wood combustion and mobile sources. Environ Health Perspect. 1994 Oct;102 (Suppl 4):75–84. doi: 10.1289/ehp.94102s475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dimashki M., Lim L. H., Harrison R. M., Harrad S. Temporal trends, temperature dependence, and relative reactivity of atmospheric polycyclic aromatic hydrocarbons. Environ Sci Technol. 2001 Jun 1;35(11):2264–2267. doi: 10.1021/es000232y. [DOI] [PubMed] [Google Scholar]
  6. Dockery D. W., Pope C. A., 3rd, Xu X., Spengler J. D., Ware J. H., Fay M. E., Ferris B. G., Jr, Speizer F. E. An association between air pollution and mortality in six U.S. cities. N Engl J Med. 1993 Dec 9;329(24):1753–1759. doi: 10.1056/NEJM199312093292401. [DOI] [PubMed] [Google Scholar]
  7. Dunbar J. C., Lin C. I., Vergucht I., Wong J., Duran J. L. Estimating the contributions of mobile sources of PAH to urban air using real-time PAH monitoring. Sci Total Environ. 2001 Nov 12;279(1-3):1–19. doi: 10.1016/s0048-9697(01)00686-6. [DOI] [PubMed] [Google Scholar]
  8. Gupta P., Banerjee D. K., Bhargava S. K., Kaul R., Shanker V. R. Abnormal pattern of lung functions in rubber factory workers. J Indian Med Assoc. 1994 Aug;92(8):260–263. [PubMed] [Google Scholar]
  9. Kaplan G. A., Keil J. E. Socioeconomic factors and cardiovascular disease: a review of the literature. Circulation. 1993 Oct;88(4 Pt 1):1973–1998. doi: 10.1161/01.cir.88.4.1973. [DOI] [PubMed] [Google Scholar]
  10. Kinney P. L., Aggarwal M., Northridge M. E., Janssen N. A., Shepard P. Airborne concentrations of PM(2.5) and diesel exhaust particles on Harlem sidewalks: a community-based pilot study. Environ Health Perspect. 2000 Mar;108(3):213–218. doi: 10.1289/ehp.00108213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Knight J. M., Eliopoulos C., Klein J., Greenwald M., Koren G. Passive smoking in children. Racial differences in systemic exposure to cotinine by hair and urine analysis. Chest. 1996 Feb;109(2):446–450. doi: 10.1378/chest.109.2.446. [DOI] [PubMed] [Google Scholar]
  12. Lena T. Suvendrini, Ochieng Victor, Carter Majora, Holguín-Veras José, Kinney Patrick L. Elemental carbon and PM(2.5 )levels in an urban community heavily impacted by truck traffic. Environ Health Perspect. 2002 Oct;110(10):1009–1015. doi: 10.1289/ehp.021101009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lewtas J., Lewis C., Zweidinger R., Stevens R., Cupitt L. Sources of genotoxicity and cancer risk in ambient air. Pharmacogenetics. 1992 Dec;2(6):288–296. doi: 10.1097/00008571-199212000-00007. [DOI] [PubMed] [Google Scholar]
  14. Lioy P. J., Greenberg A. Factors associated with human exposures to polycyclic aromatic hydrocarbons. Toxicol Ind Health. 1990 Mar;6(2):209–223. [PubMed] [Google Scholar]
  15. Pastorelli R., Guanci M., Restano J., Berri A., Micoli G., Minoia C., Alcini D., Carrer P., Negri E., La Vecchia C. Seasonal effect on airborne pyrene, urinary 1-hydroxypyrene, and benzo(a)pyrene diol epoxide-hemoglobin adducts in the general population. Cancer Epidemiol Biomarkers Prev. 1999 Jun;8(6):561–565. [PubMed] [Google Scholar]
  16. Perera Frederica P., Rauh Virginia, Tsai Wei-Yann, Kinney Patrick, Camann David, Barr Dana, Bernert Tom, Garfinkel Robin, Tu Yi-Hsuan, Diaz Diurka. Effects of transplacental exposure to environmental pollutants on birth outcomes in a multiethnic population. Environ Health Perspect. 2003 Feb;111(2):201–205. doi: 10.1289/ehp.5742. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Pope C. Arden, 3rd, Burnett Richard T., Thun Michael J., Calle Eugenia E., Krewski Daniel, Ito Kazuhiko, Thurston George D. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA. 2002 Mar 6;287(9):1132–1141. doi: 10.1001/jama.287.9.1132. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Pyy L., Mäkelä M., Hakala E., Kakko K., Lapinlampi T., Lisko A., Yrjänheikki E., Vähäkangas K. Ambient and biological monitoring of exposure to polycyclic aromatic hydrocarbons at a coking plant. Sci Total Environ. 1997 Jun 20;199(1-2):151–158. doi: 10.1016/s0048-9697(97)00065-x. [DOI] [PubMed] [Google Scholar]
  19. Sheppard E., Leitner H., McMaster R. B., Tian H. GIS-based measures of environmental equity: exploring their sensitivity and significance. J Expo Anal Environ Epidemiol. 1999 Jan-Feb;9(1):18–28. doi: 10.1038/sj.jea.7500023. [DOI] [PubMed] [Google Scholar]
  20. Sisović, Fugas M., Sega K. Assessment of human inhalation exposure to polycyclic aromatic hydrocarbons. J Expo Anal Environ Epidemiol. 1996 Oct-Dec;6(4):439–447. [PubMed] [Google Scholar]
  21. Wagenknecht L. E., Manolio T. A., Sidney S., Burke G. L., Haley N. J. Environmental tobacco smoke exposure as determined by cotinine in black and white young adults: the CARDIA Study. Environ Res. 1993 Oct;63(1):39–46. doi: 10.1006/enrs.1993.1124. [DOI] [PubMed] [Google Scholar]
  22. Watts R. R., Wallingford K. M., Williams R. W., House D. E., Lewtas J. Airborne exposures to PAH and PM2.5 particles for road paving workers applying conventional asphalt and crumb rubber modified asphalt. J Expo Anal Environ Epidemiol. 1998 Apr-Jun;8(2):213–229. [PubMed] [Google Scholar]
  23. Whyatt Robin M., Camann David E., Kinney Patrick L., Reyes Andria, Ramirez Judy, Dietrich Jessica, Diaz Diurka, Holmes Darrell, Perera Frederica P. Residential pesticide use during pregnancy among a cohort of urban minority women. Environ Health Perspect. 2002 May;110(5):507–514. doi: 10.1289/ehp.02110507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Zmirou D., Masclet P., Boudet C., Dor F., Déchenaux J. Personal exposure to atmospheric polycyclic aromatic hydrocarbons in a general adult population and lung cancer risk assessment. J Occup Environ Med. 2000 Feb;42(2):121–126. doi: 10.1097/00043764-200002000-00004. [DOI] [PubMed] [Google Scholar]
  25. van Delft J. H., Steenwinkel M. J., van Asten J. G., van Es J., Kraak A., Baan R. A. Monitoring of occupational exposure to polycyclic aromatic hydrocarbons in a carbon-electrode manufacturing plant. Ann Occup Hyg. 1998 Feb;42(2):105–114. doi: 10.1016/s0003-4878(97)00055-0. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES