Skip to main content
Revista Brasileira de Enfermagem logoLink to Revista Brasileira de Enfermagem
. 2025 Sep 8;78(3):e20240398. doi: 10.1590/0034-7167-2024-0398
View full-text in Portuguese

Mobile application prototyping using Artificial Intelligence to support childhood tuberculosis diagnosis

Prototipado de una aplicación móvil utilizando Inteligencia Artificial para apoyar el diagnóstico de tuberculosis infantil

Katerine Souza Picoli I, Flávia Regina Souza Ramos I,II, Denise Maria Guerreiro Vieira da Silva I, Bruno da Veiga Thurner III, Daniel Souza Sacramento IV, Irineide Assumpção Antunes V, Lucas Lorran Costa de Andrade II, Amélia Nunes Sicsú I
PMCID: PMC12419783  PMID: 40667905

ABSTRACT

Objectives:

to develop a mobile application prototype using Artificial Intelligence (AI) to predict and support the diagnosis of pulmonary tuberculosis in children – TB Kids.

Methods:

technological development research of the prototyping type, based on the Rational Unified Process model and its four stages: conception, elaboration, construction and transition. The development of the TB Kids prototype took place from November 2022 to July 2023.

Results:

the TB Kids prototype has features for risk assessment, nutritional assessment, tuberculin skin test, investigation of antibiotic therapy and contacts, interpretation of chest X-rays through AI with risk graph and decision-making, complementary guidance and recording of the clinical picture.

Conclusions:

the high-fidelity mobile application prototype has a consistent interface, responding with creativity and innovation to Sustainable Development Goal 3 and the lack of prediction software using AI in the diagnosis of children at risk for tuberculosis.

Descriptors: Mobile Applications; Artificial Intelligence; Tuberculosis, Pulmonary; Child; Diagnosis

INTRODUCTION

By declaring the Sustainable Development Goals (SDGs) in 2015, the United Nations (UN) mobilized international agreements and a series of regional and national policies to transform the world through Agenda 30. The 17 goals cover different dimensions of life on the planet and, in particular, human life with greater justice and quality. The third goal is perhaps the one that most directly refers to health, “ensuring healthy lives and promoting well-being for all at all ages” which includes controlling diseases that overburden health systems and reproduce geopolitical disparities and health inequities. This goal is divided into nine targets, the third of which directly addresses tuberculosis (TB) (3.3 - End the epidemics of AIDS, TB, malaria and neglected tropical diseases, and combat hepatitis, waterborne diseases and other communicable diseases by 2030)(1).

In order to monitor SDG indicators, the World Health Organization (WHO) developed a framework with 14 indicators that are associated with TB, recognizing that social, economic and health-related indicators interact in the incidence of this disease(2). Investments in TB control measures are a result of significant advances in the disease and the difficulty in controlling it, a disease that could be prevented or cured. It is estimated that TB infection affects a quarter of the world’s population and that the disease progresses to approximately 10 million people diagnosed annually, with 1 million being children. Approximately 1.3 million deaths are associated with TB each year, making it one of the ten most serious causes of infant death(3).

In 2022, the Ministry of Health (MoH) launched the nursing protocol for advanced practice of professionals in the face of TB, expanding access and all dimensions of care and qualified detection for the disease. The protocol intensifies and recognizes the expansion of advanced practice of nurses regarding comprehensive and assertive actions for TB, which are aimed at the early detection of active TB and latent tuberculosis infection (LTBI), optimization of the clinical management of confirmed cases, effectiveness of directly observed treatment and health surveillance of cases. Such actions require coordinated strategies and continuous monitoring by the Primary Health Care team(4).

Nursing has been decisive in the control, screening and diagnosis of TB cases. The National Plan to End TB highlights that nurses have a decisive role in the development of strategies to eliminate the disease. Among the proposals highlighted, full participation of this professional in the implementation of new technologies for disease diagnosis and treatment, intensification of active search, qualification of actions to combat TB and better strengthening of control actions for vulnerable groups stood out(4, 5).

In 2024, the theme of World TB Day was “Yes! We can end TB!”, in a manifesto to motivate the WHO’s goal of eliminating TB as a public health concern by 2035, which means facing the challenges that unfold in each country’s scenarios. Even considering results of stagnation or setbacks in the fight against TB impacted by the COVID-19 pandemic(6, 7, 8), there are persistent challenges in response to TB related to specific population groups, such as indigenous people, children, people deprived of liberty and homeless people(9, 10, 11), in addition to challenges related to screening, early diagnosis and preventive treatment(12).

The current onverview of TB in Brazil and worldwide highlights the need for strong commitment and investment to achieve the SDG 3 targets by 2030, as the progress achieved is still far from complete success. This includes consistent action in terms of qualifying services and professionals, in addition to the use of new technologies.

The guidelines for coping with TB management highlight the use of chest radiography as a consolidated recommendation for detecting the disease. Radiography is a sensitive (combined sensitivity of 98%) and effective screening tool. Although it does not confirm TB diagnosis due to lack of specificity, it has a considerable role in detecting the disease in exposed children(2).

In recent years, Artificial Intelligence (AI) and computer-aided detection software have been developed to augment and automate the interpretation of digital chest radiography in TB screening(13). In a literature search for studies on AI focused on chest radiograph and TB analysis, 110 results were identified, of which 21 were published in the last five years(13, 14, 15). It is important to note that only two of the 21 articles included studies with validated algorithms for children <15 years old, highlighting the need for clinical studies of AI in the pediatric imaging segment(16, 17).

Many countries have sought to accelerate the adoption of mobile health applications, as demonstrated during the COVID-19 pandemic, when mobile technologies that enabled healthcare services represented alternatives to poor access to multidisciplinary healthcare for unassisted people in remote areas or far from hospital institutions(18).

Control actions for pulmonary TB, in addition to prevention, are mainly focused on two essential actions such as early diagnosis of cases and timely disease treatment. Early recognition of TB symptoms in children is essential for carrying out appropriate tests and treatments. However, timely identification of TB in this age group has been a major challenge due to the complexity of diagnosis (symptoms and clinical signs that are often nonspecific). In this regard, it is important to improve and produce new technologies for early diagnosis of the disease, capable of enabling effective management and reducing the time between diagnosis and the start of treatment, since children are at greater risk of progression to severe forms(19).

In view of this, the question is: what tools/functionalities and content should a mobile application contain to support the diagnosis of TB cases in children?

OBJECTIVES

To develop a mobile application prototype using AI to predict and support the diagnosis of pulmonary TB in children.

METHODS

Ethical considerations

This project used a public image database and did not require submission to the ethics committee.

Study design

This is a technological development research of the prototyping type using an AI system for interpreting chest radiographs together with a validated scoring diagnostic score, proposed by the MS(4). The Rational Unified Process (RUP) was used, which is an interactive and flexible process methodology, innovative in relation to the linear model because it allows the accommodation of new requirements, changes in objectives or risk resolution throughout the process(20).

Study site and technical team

The development of the TB Kids prototype took place from November 2022 to July 2023 in Manaus, Amazonas, Brazil, together with the Universidade do Estado do Amazonas (UEA) Graduate Program in Public Health Nursing.

The technical team for producing the technology was composed of two nurses, who were the project’s creators, two scientific initiation scholarship holders, a software engineer, a designer and a nurse from the Municipal Department Tuberculosis Control Program Center. Weekly meetings were held, in person or via the Google Meet virtual platform, with the programming team in order to ensure alignment and continuous progress in the prototype development.

Study stages

The RUP methodology has four phases (conception, elaboration, construction and transition), containing several interactions in each phase and with a complete development cycle, from requirements analysis to implementation, testing and final executable version.

The conception stage included: a) understanding the product, main focus and approach; b) structuring the content and functionalities as well as the approval of requirements and interfaces; c) defining the prototype design (iconography, typography and color palette) and creating the application logo.

The entire process was operationalized through the sprint planning meeting, which consisted of weekly meetings between researchers, IT staff and the healthcare service to develop the project content, taking into account the official guidelines and documents of MoH for TB control. In a non-linear manner, the literature search, meetings, visits to healthcare services and consultations of documents were carried out throughout the entire process, maintaining a continuous and updated approach. During the scoping review, the JBI methodology(21) was used, which presented a structured model to identify and validate content and functionalities according to the scientific literature.

In the development stage, the application screens were created, foll owed by real-time testing to monitor errors, imp rove and reformulate. The goal was to eliminate the main risks and develop a stable architecture for the application, which involved creating a link between the front-end and back-end phases and training AI to read and interpret radiological images. Management used the scrum methodology, ensuring control over the entire process of creating the screens, from registration/login, navigation menu to using AI and creating the educational board.

Use case diagrams were used to describe functionalities and their interactions with users, sequences of actions and variants for a given actor, providing observable results, in order to express and document the behaviors of how the user interacts with the system(20, 22).

In the construction stage, the prototype and its development and construction stages were presented, consisting of the TB Kids prototype and usability testing, carried out by the development team with the aim of identifying errors or adding information according to the assessments. For the usability tests, a checklist-type instrument proposed by Krone (2013) and usability testing involving Nielsen users (ISO9241-11 standard) were used(23, 24).

This study did not include the transition stage (implementation of technology and product registration), which is essential for the dissemination and use of the application in clinical practice and public health.

RESULTS

TB Kids refers to a high-fidelity prototype of a hybrid application, for Android and iOS platforms using AI, capable of assessing children with respiratory symptoms of TB and assuming the potential risk for the disease, using an AI system that identifies pulmonary changes suggestive of the disease and assesses the probability of a child having pulmonary TB by calculating a clinical score validated by the MoH(4).

It is aimed at medical professionals and nurses who work in remote areas where other types of diagnostics are difficult to access. Moreover, it is a tool to support decision-making, conduct and guidance related to childhood TB based on evidence, validated risk classification score and real-time reading of chest X-rays.

To understand the product, main focus and approach, a survey was carried out of shapes, colors and typography used in various visual elements, as well as distribution, arrangement and layout of elements in interfaces of systems and applications present in the global market.

The relevant content identified in the scoping review stage, as well as the functionalities, were detailed. The requirements and interfaces were approved with the aim of providing a pleasant and intuitive user experience. Chart 1 presents the functionalities and interfaces included.

Chart 1. Description of screens, contents and functionalities of the TB Kids prototype.

TB Kids prototype
SCREENS CONTENT FUNCTIONALITY
Professional registration/login Professional name, place of work, telephone number and password. Professional login for software access and availability.
Risk score screens
Score screen 1 Nutritional assessment Fill in data regarding weight, height, age and sex. The calculation will be generated through the application based on the growth interpretation chart, and will present the following results: thinness, severe thinness, eutrophy, risk of overweight, overweight, obesity. - Severe malnutrition (weight < 10th percentile) corresponds to 5 points. - Weight ≥ 10th percentile corresponds to 0 points. Investigate the risk signaling for malnutrition according to the information. - Weights between the 10th and 3rd percentiles characterize a risk situation or nutritional alert. - Weights between the 3rd and 0.1 percentile represent low weight for age (or insufficient weight gain). - Values below the 0.1 percentile represent very low weight for age.
Score screen 2 Child symptoms screen - Child has had a fever or symptoms such as cough, weakness, expectoration, weight loss, sweating for two weeks or more. Yes answer: 15 points. - Asymptomatic or with symptoms for less than two weeks. Yes answer: 0 points. Investigate symptoms for active TB.
Score screen 3 Antibiotic therapy performed - Did the child have a respiratory infection that improved after using antibiotics for common germs or without antibiotics? Decrease 15 points. Assess whether children improved after using common antibiotics; if not, there was presumed TB.
Score screen 4 Instigation of contact of adults with TB Investigating whether the child was a close contact in the last two years of an index case for active TB corresponds to 10 points. Occasional or negative corresponds to 0 points. Record and investigate risk factors with a strong predisposition to TB.
Score screen 5 Tuberculin test analysis Did the child undergo PPD? PT≥10 mm/10 points. PT between 5 and 9 mm/5 points. PT 5 ≤ mm/0 points. Absence of the above criteria. Record and investigate risk factors with a strong predisposition to TB.
Score screen 6 Radiological picture analysis - Capture the radiograph image for identification by AI: presence of hilar adenomegaly or miliary pattern and/or condensation or infiltrate (with or without excavation). Time: unchanged for ≥ two weeks. - Presence of condensation or infiltrate (with or without excavation)? Time: ≥ two weeks. Yes answer: 15 points. - Condensation or infiltrate of any type for less than two weeks. Yes answer: 5 points. - Normal radiograph. Decrease 5 points. Perform a real-time reading of the chest X-ray of children being investigated, using the application, using the AI system. AI will analyze the radiological changes in the images; then, the score will be filled in automatically, generating a score and decision-making.
Score screen 7 Result with presentation of a graph with the measurement of risk and indication of conduct Generation of a risk graph presenting the results and analysis of each scored item with the measurement of risk and indication of conduct according to the score. Presentation of results through the risk graph and exposure of children to TB. Presentation of results through a graph of the child’s risk and exposure to TB according to score analysis. High risk for TB: >40; moderate risk: between 30 and 35; and low risk: >25. Direction based on the result. High score - start treatment. The basic regimen in children (<10 years of age) consists of three drugs, in the intensive phase (RHZ), and two drugs, in the maintenance phase (RH), with individualized pharmacological presentations (tablets and/or suspension). Moderate score: guidance to start treatment at the physician’s discretion. Low score: guidance on other examination options for investigation.
Screens of children’s clinical picture
Screen showing children’s clinical and radiological results Risk chart, score result, child assessment history, nutritional data, symptoms and image storage. Viewing the record and storage of each child’s assessment for professional monitoring and outcome.
Complementary guidance screens
Additional guidance screen Basic treatment scheme. A table with drug schemes and flowcharts will be made available to guide each treatment approach.
Complementary diagnostic method screen gastric lavage, PCR, bronchoalveolar lavage, AFB, swab. Guidance on the execution and direction of examinations that assist in decision-making.
Adverse events screen Possible adverse events that occur in children during treatment. Assist professionals with adverse events that occur during the use of medication.
Conduct flowchart screen Flowchart of conduct for investigation and assessment of active TB and LTBI. Directs professionals according to the criteria for active TB or LTBI.
Ministry of Health Manuals TB Recommendation Manuals. Professionals will have access to the most up-to-date procedures.

Source: adapted from Sant’ Anna et al. (2006) and Ministry of Health (2019).

To assess the risk of TB, the instrument recommended by the Ministry of Health for risk classification scoring to support the diagnosis of pulmonary TB in children and adolescents was used, divided into four items: clinical and radiological findings; contact with an adult with TB; tuberculin skin test; and nutritional status. Each response given to these items is converted into a specific score(4).

For the assessment interface of children’s Body Mass Index (BMI), the percentile chart used by the MoH was used, employing children’s weight, height, sex and age measurements, obtained in the physical examination, transformed into algorithms and translated into the software language(25).

According to the prototype designer, the chosen icons are visual representations of key concepts related to the application, such as child, x-ray, lung, drops and graphs. These icons were selected to directly communicate the purpose of the application, which is to assist in the early identification and diagnosis of TB in children, using prediction technology and clinical support.

In the elaboration stage, an information flow was created to direct and define the actors who will interact with the TB Kids systems and functions, in order to align real-world programming with the computational language using a use case diagram and its user interface requirements.

Using scrum for project management, mockups were created to organize and understand the application dynamics. Therefore, this stage brings together the front-end, back-end, AI training and production of screens with their interfaces.

In the front-end development, the designer proposed concatenation and its adaptation with the functions intended for users’ response, through calculations and abstract representations of variables that are later sent to the server and database, as well as visual style sheets that define the graphic guidelines in lists of definitions that combine values, measurements, sizes, colors and other aesthetic parameters. At this stage, the user experience was analyzed through internal tests on different types of cell phones.

In the back-end development, the tables and methods of communication between the user and the server were defined, optimizing the use of data as much as possible and organizing the information to be accessed in queries by users registered in the system and in analyses performed with potential patients. The unified modeling language diagram outlined the software dynamics and flow, describing its functionalities and content.

AI-based image training followed the criteria for filtering, editing, and using chest X-ray images to categorize and feed the AI neural training platform. In parallel, a dynamic and local (offline) solution was generated to use the results obtained by AI, through the export of use-oriented libraries in Javascript language, designed to be easily updated and integrated into web browsers and applications. The standard public digital image database for TB created by the National Library of Medicine in collaboration with the Department of Health and Human Services, Montgomery County, Maryland, USA, available at https://openi.nlm.nih.gov/faq#collection/https://nihcc.app.box.com/v/ChestXray-NIHCC. The sample for this first stage included 799 chest radiographs treated and categorized as normal and abnormal with manifestations of TB, 138 from the Montgomery (USA) image database (80 normal chest radiographs/without lung changes and 58 cases of radiological images with manifestations of TB) and 662 from the Chinese image database (326 cases of normal radiographs/without lung changes and 336 cases indicating radiological changes for TB)(26).

The Teachable Machine platform was chosen to train the AI of the TB Kids prototype, integrated with the rest of the system by importing the trained model in TM format, using TensorFlow technology for JavaScript. TensorFlow is an open-source library for large-scale numerical computation and machine learning. TensorFlow was responsible for grouping a series of machine learning and deep learning (neural networks) models and algorithms. All algorithms related to image prediction and machine learning are related to Tensorflow and the Teachable Machine platform(27).

The initial stage for training to begin was to standardize the collected images, eliminating all textual residue from the images and formatting them in a 1:1 (one to one) ratio of 224px/224px. The second stage was to create categories on the training platform so that AI could, through its neural networks, learn to differentiate healthy lungs from lungs with TB (Figure 1). The third stage was training, exporting the model and implementing the dynamic connection on the Teachable Machine platform.

Figure 1. Categorizing images for Artificial Intelligence training.

Figure 1

Once AI was trained, the system needed to be integrated with graphical interfaces. The fourth stage was to adapt the model to a data structure that would allow validation and testing of results. Using the VSCode platform and the Javascript, CSS, PHP and HTML languages, a web application was created that could use the model and analyze the results based on comparison with previous machine learning. All radiographs were properly divided, processed and categorized before being used in training.

The construction stage consists of presenting the TB Kids prototype, which can be accessed via a link. To access it, one must register and create a password, which will be stored in encrypted form in the database. Internally, the applications share the same database, thus enabling interoperability and data integrity.

The TB Kids application’s Splash Screen provides information about the application, such as the software’s objective, target population, and how it will be used, welcoming the professionals who will access it (Figure 2).

Figure 2. TB Kids prototype screens.

Figure 2

In Figure 2, on the second screen (control panel), users will have access to the four main features of the application. After navigating through screens 1 to 5 of the risk score, answering specific questions, professionals will have the option of attaching the image or pointing the camera at the x-ray that they would like to read. The application will start the analysis and generate a diagnostic result of the image and, if it identifies abnormalities, it will indicate the lung alteration detected as a result.

It also shows the result screen of the score generated according to children’s risk level for TB. The interpretation follows the MoH manual: score above or equal to ≥ 40 points: very likely diagnosis (start treatment); 30 to 35 points: possible diagnosis (start treatment at the doctor’s discretion); ≤ 25 points: unlikely diagnosis (investigate and use other methods)(4).

TB Kids also offers the option of additional guidance on possible approaches based on the result: high score - start treatment and professionals will have access to the basic treatment regimen for children according to their weight and age (< 10 years of age), consisting of three drugs in the intensive phase (RHZ) and two in the maintenance phase (RH), with individualized pharmacological presentations (tablets and/or suspension); low score - will be guided to other options for investigation tests (gastric lavage, PCR, bronchoalveolar lavage, BAAR, swab), and each test will have videos guiding the professionals in its execution. Guidance on possible adverse events during treatment and LTBI diagnostic algorithms are also available, understanding the importance of a comprehensive and effective assessment for TB in this age group.

Assessment resulted in seven violated heuristics out of the ten proposed by Nielsen(24), and 38 problems were identified in the 22 screens of the TB kids prototype described in Table 1.

Table 1. Violated heuristics, usability issues and severities found in prototype screens, Manaus, Amazonas, Brazil, 2023.

Heuristic violated Usability issues (percentage) Severities Total
0 1 2 3 4
H1- Visibility of system state 7 (18.42%) 7 7
H2- Correspondence between the system interface and the real world 2 (5.26%) 2 2
H3- User control and freedom 7 (18.42%) 1 1
H4- Consistency and standard 10 (26.32%) 1 1
H5- Error prevention 2 (5.26%) 1 1 2
H7- Efficiency and flexibility of use 2 (5.26%) 2 2
H8- Aesthetics and minimalist design 8 (21.05%) 8 8
Total by heuristics 38 (100%) 12 8 1 2 38

The results showed that “consistency and standard” and “minimalist aesthetics and design” were the most violated heuristics, with ten (26.32%) and eight (21.05%) usability problems, followed by “visibility of system state” and “user control and freedom”, with seven (18.42%) items violated in each heuristic assessed.

The prototype was tested by four evaluators, and their main comments using heuristics were: need for design improvement, with changes to the prototype’s color palette; the screens were cluttered and dark, not following standards; missing date of birth mask; need to insert forward and back buttons on the screens, allowing users to control their actions; there was also a lack of stages marked on the risk score screens and fields filled in on the buttons on the PPD assessment screens, needing to be unmarked by professionals.

The usability problem that received the highest severity rating(4) was the heuristic “correspondence between the system interface and the real world”, indicating that the prototype did not generate the correct score in the risk score and, consequently, interfered with the diagnostic result. Another item assessed in the same level was inaccuracy in generating results on the assessment screen for calculating children’s BMI; the error was immediately corrected in both items, and retests were performed by evaluators.

As for prototype corrections, changes were made to the design, with changes to the prototype colors, making the technology more intuitive and with less content pollution, and organizing the content by topic in an easy-to-understand language. Explanations about the graph were added, and the prototype had usage information on the home screen. After the bug was fixed, the correct score was obtained for each item assessed, generating a compatible result. The forward and back buttons were also added, marked and centered on each screen. In relation to the BMI calculation, there was an adjustment according to the percentile calculation according to the MoH, which was updated and tested, and for the PPD assessment screen, pre-marked fields were removed, and the fields for filling in were adjusted.

DISCUSSION

Without treatment, the TB mortality rate is high (50%), while the cure rate with the treatments recommended by the WHO is around 85%, which demonstrates the importance of access to early diagnosis, combined with multisectoral actions on determining factors of TB, such as poverty, malnutrition, HIV infection, smoking and diabetes(2). Healthcare providers’ knowledge about screening and detection of childhood TB cases is crucial for the best attitudes and practices, and the effectiveness of contact investigation in health units and the community, which is related to the availability of resources and the provision of specific training(9).

The leading role of nursing in tackling TB and the importance of technically based information to expand the potential of experiences in the daily routine of services are recognized, especially when these tools strengthen professionals’ autonomy in their work, are easy to apply and are produced in a participatory manner(27). With proper training, TB Kids can become a valuable tool to support the diagnosis of these professionals in the fight against the disease in children in the Amazon region and other areas affected by TB. Among the studies developed using images to feed AI, it is still challenging to have an image database of chest X-rays of children diagnosed with TB(15, 16).

The update of Resolution 736 of January 17, 2024 by the Federal Nursing Council regarding the nursing process provides for nurses’ autonomy in assessment through imaging tests, being an important support for nursing conduct, outcomes and diagnoses for this professional(28).

TB Kids technology can be a crucial tool to support nurses’ interpretation and clinical judgment, as it is aimed at orderly care and more assertive decision-making for a patient at risk for TB. By offering sensitive support in identifying significant radiological changes for the disease, it provides support for diagnosis in a systematic and careful manner, allowing the measurement (scores) of the chances of a child being affected by TB, proposing the best possible therapeutic approach for this population and reducing the potential risks of aggravation and late diagnosis.

The educational resources and support materials added to TB Kids aim to strengthen nurses’ and healthcare professionals’ knowledge and training in tackling TB in children. By providing this information, the application seeks to improve quality of care and reduce the weaknesses faced by professionals in caring for children with a presumptive diagnosis of TB.

Another advantage of this technology is that nurses can also be guided towards diagnostic investigation procedures for the latent form of the disease. Professionals will be guided towards algorithms and investigation flowcharts for both active TB and LTBI, highlighting the importance of comprehensive technologies that address all forms of the disease, since detecting the latent form is a decisive factor in interrupting the chain of transmission and eliminating TB(29).

By providing an advanced technological tool to support TB diagnosis in children, TB Kids can contribute to the elimination of TB and directly contribute to achieving the SDG targets. Eliminating TB requires a renewed commitment to equity, social justice and the use of innovative technologies. Integrating these elements into public health policies and specific programs, such as TB Kids, cannot only accelerate progress towards SDG 3, but also contribute to sustainable and inclusive development.

It is important to consider, when developing mobile applications to support diagnostics, the recent changes in the General Data Protection Law (GDPL), with the establishment of clear rules on the processing of personal data and standardization of standards. As for children, GDPL states that specific consent from those responsible for processing a child’s personal data is required(30).

It is worth noting that the training approach with a diverse and representative set of images is crucial to ensure accuracy and reliability of results obtained by TB Kids. The quality and quantity of images are determining factors for the AI system performance.

Furthermore, the usability test carried out provides a level of expertise intrinsic to the process, ensuring an in-depth and specialized analysis of the system. The use of a structured checklist and Nielsen severity classification offers a systematic and rigorous methodology for identifying, recording and prioritizing failures, providing a solid basis for implementing substantial improvements in the system being assessed(24).

Using tools like TB Kids directly aligns with UN SDG 3, which aims to ensure healthy lives and promote well-being for all at all ages. TB Kids not only supports healthcare professionals in diagnosing and treating childhood TB, but also contributes to reducing health disparities and strengthening health systems.

Study limitations

One limitation of this study was the fact that the transition stage was not considered. In the future, we intended to train users and register the product with the UEA Innovation and Technology Agency for later availability in online stores. Therefore, for the stages of assessing the application reliability and performance, we expect to collect prospective X-rays of children in reference units in the State.

Contributions to nursing, health or public policy

The prototype developed is a creative and innovative tool that responds to the current lack of available tools that use AI to diagnose children at potential risk for TB, thus representing an important contribution to tackling childhood pulmonary TB in Primary Health Care. This technology brings benefits, such as a considerable reduction in diagnosis time and increased accuracy of clinical assessments, facilitating the early identification of TB cases in children. Furthermore, by integrating AI functionalities, the prototype supports nursing professionals in identifying and continuously monitoring patients, contributing to adequate follow-up and effective management of the disease. In this way, it strengthens nursing practices and improves the quality of care provided in Primary Health Care.

CONCLUSIONS

The TB Kids prototype is a transformative proposal for nursing work in controlling childhood TB, since technologies that use AI to support TB diagnosis for this population are limited and the broader scope of nursing work in this field needs to be consolidated. In addition to the assessment for active TB, it has the differential of being able to investigate the latent form of the disease as a complete and dynamic tool that offers professionals an application for continuity and quality of care. Another advance that technology brings is that it offers professionals access to educational materials for training and improving knowledge, knowing that technologies with educational support are fundamental devices for quality of care, in addition to being a privileged focus of nursing intervention.

It is concluded that the TB Kids prototype represents a significant advance in the fight against childhood pulmonary TB. The scarcity of digital tools to support diagnosis for children makes TB Kids an innovative and empowering tool in the context of public health. However, validating intelligent tools for use in real-world scenarios is challenging, since the availability of accurate image databases for this age group remains a limitation. Therefore, further studies are needed, and the contributions of this technological product are not intended to replace human experts.

Funding Statement

Brazilian National Council for Scientific and Technological Development (In Portuguese, Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq), Process 408158/2021-2/CNPq and Amazonas Research Support Foundation (In Portuguese, Fundação de Amparo à Pesquisa do Estado do Amazonas - FAPEAM) - master’s scholarship.

Footnotes

FUNDING

Brazilian National Council for Scientific and Technological Development (In Portuguese, Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq), Process 408158/2021-2/CNPq and Amazonas Research Support Foundation (In Portuguese, Fundação de Amparo à Pesquisa do Estado do Amazonas - FAPEAM) - master’s scholarship.

REFERENCES

  • 1.United Nations (UN) Sustainable development goals: 17 goals to transform our world [Internet] 2015. [cited 2024 Jun 03]. Available from: https://www.un.org/en/exhibits/page/sdgs-17-goals-transform-world .
  • 2.Organização Mundial da Saúde (OMS) Global tuberculosis report 2023 [Internet] Geneva: World Health Organization; 2023. [cited 2024 Jun 03]. 75 p. Available from: https://www.who.int/teams/global-programme-on-tuberculosis-and-lung-health/tb-reports/global-tuberculosis-report-2023 . [Google Scholar]
  • 3.Aynalem YA, Getacher L, Ashene YE, Yirga Akalu T, Yideg Yitbarek G, Yeshanew Ayele F, et al. Incidence of tuberculosis and its predictors among under-five children with severe acute malnutrition in North Shoa, Amhara region, Ethiopia: a retrospective follow-up study. Front Pediatr. 2023;11:1134822–1134822. doi: 10.3389/fped.2023.1134822. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Ministério da Saúde (BR) Secretaria De Vigilância Em Saúde, Departamento De Vigilância Das Doenças Transmissíveis Manual de recomendações para o controle da tuberculose no Brasil [Internet] 2019. [cited 2024 Nov 14]. Available from: https://www.gov.br/saude/pt-br/centrais-de-conteudo/publicacoes/svsa/tuberculose/manual-de-recomendacoes-e-controle-da-tuberculose-no-brasil-2a-ed.pdf/view .
  • 5.Temoteo RCA, Carvalho JBL, Lira ALBC, Lima MA, Sousa YG. Nursing in adherence to treatment of tuberculosis and health technologies in the context of primary care. Esc Anna Nery. 2019;23(3):e20180321. doi: 10.1590/2177-9465-ean-2018-0321. [DOI] [Google Scholar]
  • 6.Nash K, Lai J, Sandhu K, Chandan JS, Shantikumar S, Ogunlayi F, et al. Impact of national COVID-19 restrictions on incidence of notifiable communicable diseases in England: an interrupted time series analysis. BMC Public Health. 2022;22(1):2318–2318. doi: 10.1186/s12889-022-14796-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Coutinho I, Alves LC, Werneck GL, Trajman A. The impact of the COVID-19 pandemic in tuberculosis preventive treatment in Brazil: a retrospective cohort study using secondary data. Lancet Reg Health Am. 2023;19:100444–100444. doi: 10.1016/jJana.2023.100444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Berra TZ, Ramos ACV, Alves YM, Tavares RBV, Tartaro AF, Nascimento MC, et al. Impact of COVID-19 on Tuberculosis Indicators in Brazil: a time series and spatial analysis study. Trop Med Infect Dis. 2022;7(9):247–247. doi: 10.3390/tropicalmed7090247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.An Y, Teo AKJ, Huot CY, Tieng S, Khun KE, Pheng SH, et al. Knowledge, attitude, and practices regarding childhood tuberculosis detection and management among healthcare providers in Cambodia: a cross-sectional study. BMC Infect Dis. 2022;22(1):317–317. doi: 10.1186/s12879-022-07245-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Lima IB, Nogueira LMV, Trindade LNM, Rodrigues ILA, André SR, Sousa AI. Geoespacialização da tuberculose e os programas de transferência de renda entre indígenas em território endêmico. Rev Bras Enferm. 2023;76(suppl 2):e20220216. doi: 10.1590/0034-7167-2022-0216pt. [DOI] [Google Scholar]
  • 11.Camillo AJG, Ferreira MRL, Bossonario PA, Andrade RLP, Saita NM, Rezende CEM, et al. Fatores associados ao óbito por tuberculose e HIV/aids em presídios: revisão integrativa. Acta Paul Enferm. 2022;35:eAPE01606–eAPE01606. doi: 10.37689/acta-ape/2022AR016066. [DOI] [Google Scholar]
  • 12.Satyanarayana S, Pretorius C, Kanchar A, Garcia Baena I, Den Boon S, Miller C, et al. Scaling up TB screening and TB preventive treatment globally: Key actions and healthcare service costs. Trop Med Infect Dis. 2023;8(4):214–214. doi: 10.3390/tropicalmed8040214. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Naidoo J, Shelmerdine SC, Charcape CFU, Sodhi AS. Artificial intelligence in paediatric tuberculosis. Pediatr Radiol. 2023;53(9):1733–1745. doi: 10.1007/s00247-023-05606-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Codlin AJ, Dao TP, Vo LNQ, Forse RJ, Van Truong V, Dang HM, et al. Independent evaluation of 12 artificial intelligence solutions for the detection of tuberculosis. Sci Rep. 2021;11(1):23895–23895. doi: 10.1038/s41598-021-03265-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Zhou W, Cheng G, Zhang Z, Zhu L, Jaeger S, Lure FYM, et al. Deep learning-based pulmonary tuberculosis automated detection on chest radiography: large-scale independent testing. Quant Imaging Med Surg. 2022;12(4):2344–2355. doi: 10.21037/qims-21-676. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Tang Y-X, Tang Y-B, Peng Y, Yan K, Bagheri M, Redd BA, et al. Automated abnormality classification of chest radiographs using deep convolutional neural networks. NPJ Digit Med. 2020;3(1):70–70. doi: 10.1038/s41746-020-0273-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Nafisah SI, Muhammad G. Tuberculosis detection in chest radiograph using convolutional neural network architecture and explainable artificial intelligence. Neural Comput Appl. 2024;36(1):111–131. doi: 10.1007/s00521-022-07258-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Nie L, Oldenburg B, Cao Y, Wang R. Continuous usage intention of mobile health services: model construction and validation. BMC Health Serv Res. 2023;23(1):442–442. doi: 10.1186/s12913-023-09393-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Mathiasen VD, Kruse A, Wejse C, Andersen PH, Nygaard U, Holm M. Tuberculosis among children and adolescents. Ugeskrift Laeger [Internet] 2020;182(10):09190492–09190492. [cited 2024 Jun 25] Available from: https://europepmc.org/article/med/32138825 . [PubMed] [Google Scholar]
  • 20.Booch G, Rumbaugh J, Jacobson I. The unified modeling language reference manual. Addison-Wesley Reading; 1999. [Google Scholar]
  • 21.Peters MDJ, Godfrey C, McInerney P, Munn Z, Tricco AC, Khalil H. In: JBI Manual for Evidence Synthesis. Aromataris E, Lockwood C, Porritt K, Pilla B, Jordan Z, editors. JBI; 2024. Scoping Reviews. [DOI] [Google Scholar]
  • 22.Ucán-Pech J-P, Aguilar-Vera R-A, Díaz-Mendoza J-C, Gómez-Gómez O-S. Faltas en el aprendizaje del modelado de clases y casos de uso: una revision sistemática. Rev Cient. 2023;46(1):93–106. doi: 10.14483/23448350.19655. [DOI] [Google Scholar]
  • 23.Pressman R, Maxim B. Engenharia do Software. 8. Brasil: McGraw Hill; 2016. [Google Scholar]
  • 24.Nielsen J. How to conduct a heuristic evaluation [Internet] Fremont (CA): Nielsen Norman Group; 1995. [cited 2024 Jun 25]. Available https://www.nngroup.com/articles/how-to-conduct-a-heuristic-evaluation/ [Google Scholar]
  • 25.Ministério da Saúde (BR) Secretaria de Atenção à Saúde. Departamento de Atenção Básica . Orientações para a coleta e análise de dados antropométricos em serviços de saúde: Norma Técnica do Sistema de Vigilância Alimentar e Nutricional - SISVAN [Internet] Brasília: Ministério da Saúde; 2011. [cited 2024 Jun 25]. Available from: https://bvsms.saude.gov.br/bvs/publicacoes/orientacoes_coleta_analise_dados_antropometricos.pdf . [Google Scholar]
  • 26.Jaeger S, Candemir S, Antani S, Wáng YX, Lu PX, Thoma G. Two public chest X-ray datasets for computer-aided screening of pulmonary diseases. Quant Imaging Med Surg. 2014;4(6):475–477. doi: 10.3978/j.issn.2223-4292.2014.11.20. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Janardhanan PS. Project repositories for machine learning with TensorFlow. Procedia Comput Sci. 2020;171:188–196. doi: 10.1016/j.procs.2020.04.020. [DOI] [Google Scholar]
  • 28.Conselho Federal de Enfermagem (COFEn) Resolução N° 736 de 17 de janeiro de 2024. Dispõe sobre a implementação do Processo de Enfermagem em todo contexto socioambiental onde ocorre o cuidado de enfermagem. Brasília, DF: Conselho Federal de Enfermagem [Internet]; 2024. [cited 2024 Nov 14]. Available from: https://www.cofen.gov.br/resolucao-cofen-no-736-de-17-de-janeiro-de-2024/ [Google Scholar]
  • 29.Venancio JMP, Bertolozzi MR, Orlandi GM, França FOS. Monitoramento de contatos de pacientes com tuberculose por agentes comunitários de saúde. Acta Paul Enferm. 2024;37:eAPE002335–eAPE002335. doi: 10.37689/acta-ape/2024ao002335. [DOI] [Google Scholar]
  • 30.Presidência da República (BR) Lei n. 13.853, de 8 de julho de 2019. Altera a Lei nº 13.709, de 14 de agosto de 2018, que dispõe sobre a Lei Geral de Proteção de Dados Pessoais (LGPD) [Internet] 2019 [cited 2024 Jun 25]. Available from: https://www.planalto.gov.br/ccivil_03/_ato2015-2018/2018/lei/L13709compilado.htm .
Rev Bras Enferm. 2025 Sep 8;78(3):e20240398. [Article in Portuguese] doi: 10.1590/0034-7167-2024-0398pt

Prototipagem de aplicativo móvel utilizando Inteligência Artificial para apoio ao diagnóstico da tuberculose infantil

Katerine Souza Picoli I, Flávia Regina Souza Ramos I,II, Denise Maria Guerreiro Vieira da Silva I, Bruno da Veiga Thurner III, Daniel Souza Sacramento IV, Irineide Assumpção Antunes V, Lucas Lorran Costa de Andrade II, Amélia Nunes Sicsú I

RESUMO

Objetivos:

desenvolver protótipo de aplicativo móvel utilizando Inteligência Artificial (IA) para a predição e apoio ao diagnóstico da tuberculose pulmonar em crianças – TB Kids.

Métodos:

pesquisa de desenvolvimento tecnológico do tipo prototipagem, baseada no modelo Rational Unified Process e suas quatro etapas: concepção, elaboração, construção e transição. O desenvolvimento do protótipo TB Kids ocorreu no período de novembro de 2022 a julho de 2023.

Resultados:

o protótipo TB Kids possui funcionalidades de avaliação de risco, avaliação nutricional, prova tuberculínica, investigação de antibioticoterapia e de contatos, interpretação de radiografias de tórax através da IA com gráfico de risco e tomada de decisão, de orientações complementares e registro do quadro clínico.

Conclusões:

o protótipo de aplicativo móvel de alta fidelidade é de consistente interface, respondendo com criatividade e inovação ao Objetivo de Desenvolvimento Sustentável 3 e à carência de softwares de predição utilizando IA no diagnóstico de crianças com risco para tuberculose.

Descritores: Aplicativos Móveis, Inteligência Artificial, Tuberculose Pulmonar, Criança, Diagnóstico

INTRODUÇÃO

Ao declararem os Objetivos de Desenvolvimento Sustentável (ODS), em 2015, a Organização das Nações Unidas (ONU) mobilizou acordos internacionais e uma série de políticas regionais e nacionais para transformar o mundo por meio da Agenda 30. Os 17 objetivos recobrem diferentes dimensões da vida no planeta e, em especial, a vida humana com mais justiça e qualidade. O terceiro objetivo talvez seja aquele que de forma mais direta remete à saúde, “Assegurar uma vida saudável e promover o bem-estar para todos, em todas as idades”, que inclui o controle de doenças que sobrecarregam os sistemas de saúde e reproduzem disparidades geopolíticas e inequidades em saúde. Este objetivo se divide em nove metas, sendo a terceira diretamente dirigida à tuberculose (TB) (3.3 - Até 2030, acabar com a epidemia de AIDS, TB, malária e doenças tropicais negligenciadas, além de combater a hepatite, doenças transmitidas pela água e outras doenças transmissíveis)(1).

Com a finalidade de monitorar os indicadores dos ODS, a Organização Mundial da Saúde (OMS) desenvolveu um quadro com 14 indicadores que estão associados à TB, reconhecendo que indicadores sociais, econômicos e relacionados à saúde interatuam na incidência dessa doença(2). Os investimentos em ações para o controle da TB decorrem de seus expressivos avanços e dificuldade de controle de uma doença que poderia ser prevenida ou curada. Estima-se que a infecção por TB atinja um quarto da população mundial e a evolução para a doença se aproxime de 10 milhões de pessoas diagnosticadas anualmente, com 1 milhão em crianças. Cerca de 1,3 milhões de mortes são associadas à TB por ano, estando entre as dez causas mais graves de morte infantil(3).

O Ministério da Saúde (MS) lançou, em 2022, o protocolo de enfermagem para a prática avançada do profissional diante da TB, ampliando o acesso e todas as dimensões do cuidado e detecção qualificada para a doença. O protocolo intensifica e reconhece a ampliação da prática avançada do enfermeiro quanto às ações integrais e assertivas para TB, sendo elas direcionadas à detecção precoce da TB ativa e infecção latente da tuberculose (ILTB), otimização do manejo clínico dos casos confirmados, efetividade do tratamento diretamente observado e vigilância em saúde dos casos. Tais ações necessitam de estratégias articuladas e monitoramento contínuo pela equipe da Atenção Primária à Saúde(4).

A enfermagem tem sido decisiva no controle, rastreio e diagnóstico de casos de TB. O Plano Nacional pelo Fim da TB destaca que o enfermeiro tem um protagonismo determinante na construção de estratégias de eliminação da doença. Das propostas pontuadas, destacaram-se a participação integral desse profissional na implementação de novas tecnologias para o diagnóstico e tratamento da doença, intensificação da busca ativa, qualificação de ações de enfrentamento para TB e um melhor fortalecimento de ações de controle para os grupos vulneráveis(4, 5).

Em 2024, o tema do Dia Mundial da TB foi “Sim! Nós podemos acabar com a TB!” em um manifesto para motivar a meta da OMS de eliminar a TB como problema de saúde pública até 2035, o que significa enfrentar os desafios que se desdobram nos cenários de cada país. Mesmo considerando resultados de estagnação ou retrocesso na luta contra a TB impactados pela pandemia de COVID-19(6, 7, 8), existem desafios persistentes na resposta à TB relacionados a grupos populacionais específicos, como indígenas, crianças, pessoas privadas de liberdade e moradores de rua(9, 10, 11), além dos desafios relacionados ao rastreio, diagnóstico precoce e tratamento preventivo(12).

O panorama atual da TB no Brasil e no mundo alerta sobre a exigência de forte empenho e investimento para o alcance das metas do ODS 3 até 2030, pois os avanços alcançados ainda estão longe do pleno sucesso. Isso inclui consistente atuação em termos de qualificação de serviços e profissionais, além do uso de novas tecnologias.

As diretrizes de enfrentamento para o manejo da TB destacam o uso da radiografia de tórax como recomendação consolidada para detecção da doença. A radiografia é um instrumento de triagem sensível (sensibilidade combinada de 98%) e efetiva. Embora não defina a confirmação do diagnóstico de TB por carência de especificidade, ela possui uma função considerável na detecção da doença em crianças expostas(2).

Nos últimos anos, a Inteligência Artificial (IA) e software de detecção assistida por computador foram desenvolvidos para aumentar e automatizar a interpretação da radiografia digital de tórax na triagem de TB(13). Em uma busca na literatura por estudos sobre IA voltados para análises de radiografias torácicas e TB, foram identificados 110 resultados, dos quais 21 foram publicados nos últimos cinco anos(13, 14, 15). É importante salientar que somente dois dos 21 artigos incluíram estudos com algoritmos validados para crianças <15 anos, evidenciando a necessidade de estudos clínicos de IA no segmento de imagem pediátrica(16, 17).

Muitos países têm buscado acelerar a adoção de aplicativos móveis em saúde, como foi demonstrado durante a pandemia de COVID-19, quando tecnologias móveis que viabilizassem serviços de saúde representavam alternativas diante do deficiente acesso à assistência multiprofissional à saúde por pessoas desassistidas em áreas remotas ou longe de instituições hospitalares(18).

As ações de controle da TB pulmonar, para além de sua prevenção, são focadas principalmente em duas ações essenciais: o diagnóstico precoce dos casos e o tratamento oportuno da doença. O reconhecimento precoce dos sintomas de TB em crianças é primordial para a realização de testes e tratamentos adequados. Todavia, a identificação em tempo hábil da TB nessa faixa etária tem sido um grande desafio, devido à complexidade do diagnóstico (sintomas e sinais clínicos muitas vezes inespecíficos). Nesse sentido, é importante aperfeiçoar e produzir novas tecnologias de diagnóstico precoce da doença capazes de viabilizar manejo efetivo e redução do tempo entre o diagnóstico e início do tratamento, já que crianças correm um risco maior de progressão para as formas graves(19).

Diante disso, questiona-se: quais as ferramentas/funcionalidades e conteúdos devem conter aplicativo móvel para o apoio ao diagnóstico de casos de TB em crianças?

OBJETIVOS

Desenvolver protótipo de aplicativo móvel utilizando IA para a predição e apoio ao diagnóstico da TB pulmonar em crianças.

MÉTODOS

Considerações éticas

Este projeto utilizou banco de imagens público, não necessitando de submissão ao comitê de ética.

Tipo de estudo

Trata-se de pesquisa de desenvolvimento tecnológico do tipo prototipagem, utilizando um sistema de IA para interpretação de radiografias torácicas juntamente com um escore de diagnóstico de pontuação validado proposto pelo MS(4). Foi utilizado o Rational Unified Process (RUP), que é uma metodologia de processo interativo e flexível, inovador em relação ao modelo linear, por permitir a acomodação de novos requisitos, mudanças de objetivos ou solução de riscos ao longo do processo(20).

Local e equipe técnica do estudo

O desenvolvimento do protótipo TB Kids ocorreu no período de novembro de 2022 a julho de 2023 em Manaus, Amazonas, Brasil, junto ao Programa de Pós-Graduação em Enfermagem em Saúde Pública da Universidade do Estado do Amazonas (UEA).

A equipe técnica da produção da tecnologia foi composta por duas enfermeiras, que foram idealizadoras do projeto, dois bolsistas de iniciação científica, um engenheiro de software, um designer e um enfermeiro do Núcleo do Programa de Controle de Tuberculose da Secretaria Municipal. Foram realizadas reuniões semanais, presenciais ou por via plataforma virtual Google Meet com a equipe de programação, a fim de garantir o alinhamento e o progresso contínuo do desenvolvimento do protótipo.

Etapas do estudo

A metodologia RUP possui quatro fases (concepção, elaboração, construção e transição), contendo várias interações em cada fase e com um ciclo completo de desenvolvimento, desde a análise de requisitos até implementação, testes e versão final executável.

A etapa de concepção incluiu: a) compreensão do produto, foco principal e abordagem; b) estruturação dos conteúdos e funcionalidades, assim como a aprovação dos requisitos e interfaces; c) definição do design do protótipo (iconografia, tipografia e paleta de cores) e criação da logomarca do aplicativo.

Todo o processo foi operacionalizado por meio do sprint planning meeting, que consistiu em reuniões semanais entre pesquisadores, equipe de TI e do serviço de saúde para construção do conteúdo do projeto, levando em consideração as diretrizes e documentos oficiais do MS para o controle da TB. De forma não linear, a busca na literatura, as reuniões, as visitas aos serviços de saúde e as consultas aos documentos foram realizadas ao longo de todo o processo, mantendo-se uma abordagem contínua e atualizada. Durante a revisão de escopo, foi utilizada a metodologia do JBI(21), que apresentou um modelo estruturado para identificar e validar conteúdos e funcionalidades de acordo com a literatura científica.

Na etapa de elaboração, houve a criação das telas do aplicativo, seguida de testes em tempo real para acompanhamento de erros, aperfeiçoamento e reformulação. O objetivo foi eliminar os principais riscos e desenvolver uma arquitetura estável para o aplicativo, o que envolveu a produção do link entre as fases front-end e back-end e o treinamento da IA para leitura e interpretação de imagens radiológicas. O gerenciamento utilizou a metodologia scrum, garantindo o controle de todo o processo de criação das telas, do cadastro/login, menu de navegação até a utilização da IA e criação do quadro educativo.

Diagramas de casos de usos foram usados para descrever as funcionalidades e suas interações com os usuários, as sequências de ações e variantes para um determinado ator, fornecendo resultados observáveis, de modo a expressar e documentar os comportamentos de como o usuário interage com o sistema(20, 22).

Na etapa de construção, foi realizada a apresentação do protótipo e suas etapas de desenvolvimento e construção, que consiste no protótipo TB Kids e teste de usabilidade, realizado pela equipe de desenvolvimento com o objetivo de identificar erros ou acrescentar informações de acordo com as avaliações. Para os testes de usabilidade, foram utilizados um instrumento tipo checklist proposto Krone (2013) e teste de usabilidade envolvendo usuários de Nielsen (Norma ISO9 241-11)(23, 24).

Neste estudo, não foi contemplada a etapa de transição (implementação da tecnologia e registro do produto), fundamental para a disseminação e utilização do aplicativo na prática clínica e na saúde pública.

RESULTADOS

O TB Kids refere-se a um protótipo de alta fidelidade de aplicativo tipo híbrido para as plataformas Android e iOS utilizando IA, capaz de avaliar crianças com sintomas respiratórios de TB e presumir o risco potencial para a doença, utilizando um sistema de IA que identifica alterações pulmonares sugestivas para a doença e avalia a probabilidade de uma criança ter TB pulmonar por meio do cálculo de escore clínico validado pelo MS(4).

É direcionado a profissionais médicos e enfermeiros que atuam em áreas remotas e de difícil acesso a outros tipos de diagnósticos. Além disso, é uma ferramenta de apoio na tomada de decisão, condutas e orientações relacionadas à TB infantil baseadas em evidências, escore de classificação de risco validado e leitura em tempo real de radiografias de tórax.

Para compreensão do produto, foco principal e abordagem, foi realizado levantamento de formas, cores e tipografias utilizadas em elementos visuais diversos, bem como distribuição, arranjo e diagramação de elementos em interfaces de sistemas e aplicativos presentes no mercado mundial.

Foram detalhados os conteúdos relevantes identificados na etapa de revisão do escopo, bem como as funcionalidades. Os requisitos e as interfaces foram aprovados com o objetivo de proporcionar uma experiência de usuário agradável e intuitiva. As funcionalidades e interfaces incluídas estão apresentadas no Quadro 1.

Quadro 1. Descrição das telas, conteúdos e funcionalidades do protótipo TB Kids .

Protótipo TB Kids
TELAS CONTEÚDO FUNCIONALIDADE
Cadastro do profissional/login Nome do profissional, local que atua, número de telefone e senha. Login do profissional para acesso e disponibilidade do software.
Telas do escore de risco
Tela 1 do escore Avaliação nutricional Preencher dados referentes ao peso, altura, idade e sexo. O cálculo será gerado através do aplicativo com base no gráfico de interpretação do crescimento, e apresentará os seguintes resultados: magreza, magreza acentuada, eutrofia, risco de sobrepeso, sobrepeso, obesidade. - Desnutrição grave (peso < percentil 10) corresponde a 5 pontos. - Peso ≥ percentil 10 corresponde a 0 pontos. Investigar a sinalização de risco para desnutrição conforme informações. - Pesos entre os percentis 10 e 3 caracterizam uma situação de risco ou de alerta nutricional. - Pesos entre o percentil 3 e o percentil 0,1 representam peso baixo para a idade (ou ganho insuficiente de peso). - Valores abaixo do percentil 0,1 representam peso muito baixo para a idade.
Tela 2 do escore Tela de sintomas da criança - Criança teve febre ou sintomas como tosse, adinamia, expectoração, emagrecimento, sudorese por duas semanas ou mais. Resposta sim: 15 pontos. - Assintomático ou com sintomas há menos de duas semanas. Resposta sim: 0 pontos. Investigar os sintomas para TB ativa.
Tela 3 do escore Realização de antibioticoterapia - Criança teve infecção respiratória com melhora após uso de antibióticos para germes comuns ou sem antibióticos? Diminuir 15 pontos. Avaliar para esse quadro se a criança melhorou após o uso de antibióticos comuns; caso não, houve TB presumida.
Tela 4 do escore Instigação do contato de adultos com TB Investigar se a criança foi contato próximo nos últimos dois anos de caso índice para TB ativa corresponde a 10 pontos. Ocasional ou negativo corresponde a 0 ponto. Registrar e investigar fatores de risco com forte predisposição para TB.
Tela 5 do escore Análise da prova tuberculínica Criança realizou o PPD? PT≥10 mm/10 pontos. PT entre 5 e 9 mm/5 pontos. PT 5 ≤ mm/0 pontos. Ausência dos critérios acima. Registrar e investigar fatores com forte predisposição para TB.
Tela 6 do escore Análise do quadro radiológico - Capturar a imagem da radiografia para identificação através da IA: presença de adenomegalia hilar ou padrão miliar e/ou condensação ou infiltrado (com ou sem escavação). Tempo: inalterado por ≥ duas semanas. - Presença de condensação ou infiltrado (com ou sem escavação)? Tempo: ≥ duas semanas. Resposta sim: 15 pontos. - Condensação ou infiltrado de qualquer tipo por menos de duas semanas. Resposta sim: 5 pontos. - Radiografia normal. Diminuir 5 pontos. Realizar a leitura da radiografia de tórax, em tempo real, da criança investigada, pelo aplicativo, através do sistema de IA. Serão analisadas por IA as alterações radiológicas das imagens; logo, o escore será preenchido automaticamente, gerando uma pontuação e tomada de decisão.
Tela 7 do escore Resultado com a apresentação do gráfico com a mensuração do risco e indicação da conduta Geração de gráfico de risco apresentando os resultados e análise de cada item pontuado com a mensuração do risco e indicação da conduta de acordo com a pontuação. Apresentação dos resultados através do gráfico de risco e exposição da criança para TB. Apresentação dos resultados através do gráfico de risco e exposição da criança para TB de acordo com análise de pontuação. Risco alto para TB: >40; risco moderado: entre 30 e 35; e risco baixo: > 25. Direcionamento conforme o resultado. Escore alto - iniciar o tratamento. O esquema básico em crianças (< de 10 anos de idade) é composto por três fármacos, na fase intensiva (RHZ), e dois fármacos, na fase de manutenção (RH), com apresentações farmacológicas individualizadas (comprimidos e/ou suspensão). Escore moderado: orientação iniciar tratamento a critério médico. Escore baixo: será orientado a outras opções de exames para investigação.
Telas do quadro clínico da criança
Tela do resultado do quadro clínico e radiológico da criança Gráfico de risco, resultado do escore, histórico da avaliação da criança, dados nutricionais, sintomas e armazenamento de imagens. Visualização do registro e armazenamento da avaliação de cada criança para acompanhamento do profissional e desfecho.
Telas de orientação complementar
Tela de orientação complementar Esquema básico de tratamento. Será disponibilizado um quadro com esquemas de fármacos e fluxogramas orientando cada conduta de tratamento.
Tela de método diagnóstico complementar lavado gástrico, PCR, lavado bronco-alveolar, BAAR, swab. Orientação quanto à execução e direcionamento de exames que auxiliem na tomada de decisão.
Tela de eventos adversos Possíveis eventos adversos que ocorrem na criança durante o tratamento. Auxiliar o profissional quanto aos eventos adversos que ocorrem durante o uso da medicação.
Tela de fluxograma de conduta Fluxograma de conduta para investigação e avaliação de TB ativa e ILTB. Direciona o profissional de acordo com os critérios para TB ativa ou ILTB.
Manuais do Ministério da Saúde Manuais de recomendações para TB. Profissional poderá ter acesso às condutas mais atualizadas.

Fonte: adaptado de Sant’ Anna et al. (2006) e Ministério da Saúde (2019).

Para avaliação de risco para TB, foi utilizado o instrumento recomendado pelo MS para escore de classificação de risco para apoio ao diagnóstico da TB pulmonar em crianças e adolescentes, dividido em quatro itens: quadro clínico-radiológico; contato de adulto com TB; prova tuberculínica; e estado nutricional. Cada resposta dada a esses itens é convertida em uma pontuação específica(4).

Para interface de avaliação do Índice de Massa Corporal (IMC) da criança, foi utilizado o gráfico de percentil utilizado pelo MS, empregando as medidas de peso, altura, sexo e idade da criança, obtidas no exame físico, transformadas em algoritmos e traduzidos para a linguagem do software(25).

Na definição do designer do protótipo, os ícones escolhidos são representações visuais de conceitos-chave relacionados ao aplicativo, como criança, radiografia, pulmão, gotas e gráficos. Esses ícones foram selecionados para comunicar de forma direta o objetivo do aplicativo, que é auxiliar na identificação e diagnóstico precoce da TB em crianças, utilizando tecnologia de predição e apoio clínico.

Na etapa de elaboração, foi criado fluxo de informação para o direcionamento e definição dos atores que irão interagir com os sistemas e as funções do TB Kids, a fim de alinhar a programação do mundo real com a linguagem computacional utilizando diagrama de caso de uso e seus requisitos de interface com o usuário.

Utilizando o scrum para o gerenciamento do projeto, foram elaborados os mockups para a organização e compreensão da dinâmica do aplicativo. Portanto, esta etapa reúne o front-end, back-end, treinamento da IA e produção das telas com suas interfaces.

No desenvolvimento do front-end, houve a concatenação proposta pelo designer e sua adaptação com as funções destinadas à resposta do usuário, através de cálculos e representações abstratas de variáveis que são enviadas posteriormente ao servidor e banco de dados, como também folhas de estilos visuais que definem as diretrizes gráficas em listas de definições que unem valores, medidas, tamanhos, cores e demais parâmetros estéticos. Nesta fase, a experiência de usuário foi analisada através de testes internos em diferentes tipos de aparelhos celulares.

No desenvolvimento do back-end, foram definidos as tabelas e métodos de comunicação entre usuário e servidor, otimizando ao máximo o uso de dados e organizando as informações para serem acessadas em consultas por usuários cadastrados no sistema e por análises realizadas com potenciais pacientes. O diagrama de linguagem de modelagem unificada traçou a dinâmica e o fluxo do software, descrevendo as suas funcionalidades e conteúdo.

O treinamento das imagens utilizando IA seguiu os critérios de filtragem, edição e utilização das imagens de radiografias de tórax, a fim de categorizar e alimentar a plataforma de treinamento neural da IA. Paralelamente, foi gerada solução dinâmica e local (offline) para utilização dos resultados obtidos pela IA, por meio da exportação de bibliotecas orientadas ao uso em linguagem Javascript, projetadas para serem facilmente atualizadas e integradas em navegadores de internet e aplicativos. Foi utilizado o banco de dados públicos de imagem digital padrão para TB, criado pela Biblioteca Nacional de Medicina em colaboração com o Departamento de Saúde e Serviços Humanos, Condado de Montgomery, Maryland, EUA, disponível em https://openi.nlm.nih.gov/faq#collection/https://nihcc.app.box.com/v/Ches-tXray-NIHCC. A amostra dessa primeira etapa contou com 799 imagens de radiografias de tórax, tratadas e categorizadas como normais e anormais, com manifestações de TB, sendo 138 do banco de imagens de Montgomey (EUA) (80 imagens de radiografias de tórax normais/sem alterações pulmonares e 58 casos de imagens radiológicas com manifestações para TB) e 662 do banco de imagens da China (326 casos de radiografias normais/sem alterações pulmonares e 336 casos indicando alterações radiológicas para TB)(26).

Para o treinamento da IA do protótipo TB Kids, foi escolhida a plataforma Teachable Machine, integrada ao restante do sistema através da importação do modelo treinado no formato TM, utilizando a tecnologia TensorFlow para javaScript. TensorFlow é uma biblioteca de código aberto para computação numérica e aprendizado de máquina em grande escala. O TensorFlow foi responsável por agrupar uma série de modelos e algoritmos de aprendizado de máquina e aprendizado profundo (redes neurais). Todos os algoritmos relacionados à predição de imagens e aprendizado de máquina estão relacionados ao Tensorflow e à plataforma Teachable Machine (27).

O passo inicial para o treinamento ser iniciado foi a padronização das imagens coletadas, eliminando todo resíduo textual das imagens e formatando-as em uma proporção 1:1 (um para um) de 224px/224px. O segundo passo foi a elaboração de categorias na plataforma de treinamento, para que a IA pudesse, através de suas redes neurais, aprender a diferenciar pulmões saudáveis de pulmões com TB (Figura 1). O terceiro passo foi o treinamento, exportação do modelo e implementação da conexão dinâmica na plataforma Teachable Machine.

Figura 1. Categorização das imagens para treinamento da Inteligência Artificial.

Figura 1

Uma vez treinada a IA, o sistema precisava de integração com interfaces gráficas. O quarto passo foi a adequação do modelo a uma estrutura de dados que permitisse validação e teste de resultados. Utilizando a plataforma VSCode e as linguagens Javascript, css, php e html, foi elaborada uma aplicação web capaz de utilizar o modelo e analisar os resultados a partir da comparação com o aprendizado de máquina prévio. Todas as radiografias foram devidamente divididas, tratadas e categorizadas antes de serem utilizadas no treinamento.

A etapa de construção consiste na apresentação do protótipo TB Kids, o qual poderá ser acessado por meio de link. Para acesso, é necessário realizar cadastro e criar senha, que será armazenada de forma criptografada no banco de dados. Internamente, as aplicações compartilham o mesmo banco de dados, permitindo, assim, a interoperabilidade e a integridade dos dados.

A tela Splash Screen do TB Kids traz informações sobre o aplicativo, tais como o objetivo do software, população-alvo, como ele será utilizado, dando as boas-vindas ao profissional que irá acessá-lo (Figura 2).

Figura 2. Telas do protótipo TB Kids .

Figura 2

Na Figura 2, na segunda tela (painel de controle), o usuário terá acesso às quatro funcionalidades principais do aplicativo. Após navegar pelas telas 1 a 5 de escore de risco, respondendo às questões específicas, o profissional terá a opção de anexar a imagem ou apontar a câmera para a radiografia que gostaria de realizar a leitura. O aplicativo irá iniciar a análise e gerar um resultado de diagnóstico da imagem e, caso identifique anormalidades, irá indicar alteração pulmonar detectada como resultado.

Ainda, mostra também a tela de resultado do escore gerado de acordo com a pontuação do grau de risco que a criança possui para TB. A interpretação segue o manual do MS: pontuação acima ou igual ≥ a 40 pontos: diagnóstico muito provável (iniciar tratamento); 30 a 35 pontos: diagnóstico possível (iniciar tratamento a critério médico); ≤ a 25 pontos: diagnóstico pouco provável (investigar e utilizar outros métodos)(4).

O TB Kids apresenta também a opção de orientação complementar de possíveis condutas conforme o resultado: escore alto - iniciar o tratamento e terá disponível ao profissional o esquema básico de tratamento em crianças de acordo com o seu peso e idade (< de 10 anos de idade), composto por três fármacos na fase intensiva (RHZ) e dois na fase de manutenção (RH), com apresentações farmacológicas individualizadas (comprimidos e/ou suspensão); escore baixo - será orientado a outras opções de exames para investigação (lavado gástrico, PCR, lavado bronco-alveolar, BAAR, swab), e cada exame terá vídeos orientando o profissional na sua execução. Também são acessíveis orientações para possíveis eventos adversos durante o tratamento e algoritmos de diagnóstico de ILTB, compreendendo a importância de uma avaliação integral e efetiva para a TB nessa faixa etária.

A avaliação resultou em sete heurísticas violadas das dez propostas por Nielsen(24), e foram identificados 38 problemas nas 22 telas do protótipo TB Kids, descritos na Tabela 1.

Tabela 1. Heurísticas violadas, problemas de usabilidade e as severidades encontradas nas telas do protótipo, Manaus, Amazonas, Brasil, 2023.

Heurística violada Problemas de usabilidade (porcentagem) Severidades Total
0 1 2 3 4
H1- Visibilidade do estado do sistema 7 (18,42%) 7 7
H2- Correspondência entre a interface do sistema e o mundo real 2 (5,26%) 2 2
H3- Controle e liberdade do usuário 7 (18,42%) 1 1
H4- Consistência e padrão 10 (26,32%) 1 1
H5- Prevenção de erros 2 (5,26%) 1 1 2
H7- Eficiência e flexibilidade de uso 2 (5,26%) 2 2
H8- Estética e design minimalistas 8 (21,05%) 8 8
Total por heurística 38 (100%) 12 8 1 2 38

Os resultados demostraram que “consistência e padrão” e “estética e design minimalistas” foram as heurísticas mais violadas, com dez (26,32%) e oito (21, 05%) problemas de usabilidade, seguidas por “visibilidade do estado do sistema” e “controle e liberdade do usuário”, com sete (18,42%) itens violados em cada heurística avaliada.

O protótipo foi testado por quatro avaliadores, e seus principais comentários fazendo uso das heurísticas foram: necessidade de melhoria do design, com alteração da paleta de cores do protótipo; as telas estavam poluídas e escuras, sem seguir padrões; máscara da data de nascimento ausente; necessidade de inserir botões de avançar e voltar nas telas, permitindo ao usuário controle de suas ações; houve também ausência de etapas sinalizadas nas telas de escore de risco e campos preenchidos nos botões nas telas de avaliação de PPD, necessitando serem desmarcados pelo profissional.

O problema de usabilidade que recebeu o maior grau de se-veridade(4) foi a heurística “correspondência entre a interface do sistema e o mundo real”, indicando que o protótipo não gerava a pontuação correta no escore de risco e, consequentemente, interferia no resultado do diagnóstico. Outro item avaliado nesse mesmo grau foi a imprecisão ao gerar resultados na tela de avaliação do cálculo de IMC da criança; o erro foi corrigido imediatamente em ambos os itens, e foram realizados os retestes pelos avaliadores.

Quantos às correções do protótipo, foram realizadas mudanças no design, com alterações das cores do protótipo, tornando a tecnologia mais intuitiva e com menos poluição de conteúdo, organização dos conteúdos por tópico em uma linguagem de fácil compreensão. Foram inseridas explicações sobre o gráfico, e na tela inicial, o protótipo possuía informações de uso. Após a correção do bug, obteve-se a pontuação correta em cada item avaliado, gerando resultado compatível. Foram também adicionados os botões de avançar e voltar, sinalizados e centralizados em cada tela. Quanto ao cálculo de IMC, houve ajuste conforme o cálculo de percentil de acordo com o MS, sendo atualizado e testado, e para a tela de avaliação de PPD, foram removidos os campos pré-demarcados, sendo ajustados os campos para preenchimento.

DISCUSSÃO

Sem tratamento, a taxa de mortalidade da TB é elevada (50%), enquanto a taxa de cura com os tratamentos recomendados pela OMS é de cerca de 85%, o que demonstra a importância do acesso ao diagnóstico de forma precoce, aliado a ações multissetoriais sobre fatores determinantes da TB, como pobreza, subnutrição, infeção pelo VIH, tabagismo e diabetes(2). O conhecimento dos prestadores de cuidados de saúde sobre o rastreio e a detecção de casos de TB infantil é determinante para as melhores atitudes e práticas, e efetividade da investigação de contatos nas unidades de saúde e comunidade, o que tem relação com a disponibilidade de recursos e oferta de formação específica(9).

São reconhecidos o protagonismo da enfermagem no en-frentamento da TB e a importância da informação tecnicamente fundamentada para ampliar o potencial das experiências no cotidiano dos serviços, em especial quando essas ferramentas fortalecem a autonomia do profissional em seu trabalho, são de fácil aplicabilidade e são produzidas de forma participativa(27). Com um treinamento adequado, o aplicativo TB Kids pode se tornar uma ferramenta valiosa para apoio ao diagnóstico desse profissional na luta contra a doença em crianças na região amazônica e em outras áreas afetadas pela TB. Entre os estudos desenvolvidos utilizando imagens para alimentação de IA, ainda é desafiante ter um banco de imagens de radiografias torácicas de crianças com diagnóstico para TB(15, 16).

A atualização da Resolução n° 736, de 17 de janeiro de 2024, pelo Conselho Federal de Enfermagem a respeito do processo de enfermagem prevê por parte do enfermeiro a autonomia na avaliação por meio de exames de imagem, sendo um suporte importante para condutas, desfechos e diagnósticos de enfermagem para esse profissional(28).

A tecnologia TB Kids pode ser uma ferramenta crucial de apoio na interpretação e no julgamento clínico do enfermeiro, por ser direcionada a cuidados ordenados e à tomada de decisão mais assertiva de um paciente em risco para TB. Ao oferecer suporte sensível na identificação de alterações radiológicas expressivas para a doença, promove um apoio ao diagnóstico de forma sistemática e criteriosa, permitindo mensurar (pontuações) as chances de uma criança ser acometida pela TB, propor a melhor conduta terapêutica possível para essa população e diminuir os riscos potenciais de agravo e de diagnóstico tardio.

Os recursos educacionais e materiais de apoio adicionados ao aplicativo TB Kids visam fortalecer o conhecimento e a capacitação de enfermeiros e profissionais de saúde no enfrentamento da TB em crianças. Ao fornecer essas informações, o aplicativo busca melhorar a qualidade do atendimento e reduzir as fragilidades enfrentadas pelos profissionais no cuidado a crianças com diagnóstico presuntivo de TB.

Outro diferencial da tecnologia é a possibilidade de o enfermeiro ser direcionado também a condutas de investigação diagnóstica para a forma latente da doença. O profissional será direcionado a algoritmos e fluxogramas de investigação tanto para TB ativa quanto para ILTB, salientando a importância de tecnologias completas e que abordem todas as formas da doença, uma vez que a detecção da forma latente é um fator decisivo para interrupção da cadeia de trasmissão e eliminação da TB(29).

O TB Kids, ao fornecer uma ferramenta tecnológica avançada como apoio ao diagnóstico da TB em crianças, poderá contribuir para a eliminação da TB e colaborar diretamente para efetivação das metas dos ODS. A eliminação da TB requer um compromisso renovado com a equidade, a justiça social e o uso de tecnologias inovadoras. A integração desses elementos em políticas de saúde pública e em programas específicos, como o TB Kids, pode não apenas acelerar o progresso em direção ao ODS 3, mas também contribuir para um desenvolvimento sustentável e inclusivo.

É importante considerar, durante o desenvolvimento de aplicativos móveis para o apoio ao diagnóstico, as recentes mudanças na Lei Geral de Proteção de Dados (LGPD), com o estabelecimento de regras claras sobre tratamento de dados pessoais e padronização de normas. Quanto às crianças, a LGPD diz que é necessário, para tratar os dados pessoais da criança, o consentimento específico dos responsáveis(30).

Cabe ressaltar que a abordagem de treinamento com um conjunto diversificado e representativo de imagens é crucial para garantir a precisão e a confiabilidade dos resultados obtidos pelo aplicativo TB Kids. A qualidade e a quantidade de imagens são fatores determinantes para o desempenho do sistema de IA.

Ainda, o teste de usabilidade realizado confere um nível de expertise intrínseco ao processo, garantindo uma análise aprofundada e especializada do sistema. A utilização do checklist estruturado e da classificação de severidade de Nielsen oferece uma metodologia sistemática e rigorosa para a identificação, registro e priorização de falhas, proporcionando uma base sólida para a implementação de melhorias substanciais no sistema avaliado(24).

A utilização de ferramentas como o TB Kids se alinha diretamente com o ODS 3 da ONU, que visa assegurar uma vida saudável e promover o bem-estar para todos, em todas as idades. O TB Kids não apenas apoia os profissionais de saúde no diagnóstico e tratamento da TB infantil, mas também contribui para a redução das disparidades na saúde e o fortalecimento dos sistemas de saúde.

Limitações do estudo

Uma limitação do estudo foi o fato de a etapa de transição não ser contemplada. Em momento futuro, pretende-se realizar o treinamento dos usuários e o registro do produto na Agência de Inovação e Tecnologia da UEA, para posterior disponibilização nas lojas virtuais. Portanto, para as etapas de avaliação de confiabilidade e desempenho do aplicativo, espera-se realizar a coleta de radiografias de crianças de maneira prospectiva em unidades de referências no Estado.

Contribuições para as áreas da enfermagem, saúde ou políticas públicas

O protótipo desenvolvido é uma ferramenta criativa e inovadora que responde à atual carência de ferramentas disponíveis que utilizam IA para diagnóstico de crianças com potencial risco para TB, representando, assim, uma importante contribuição para o enfrentamento da TB pulmonar infantil na Atenção Primária à Saúde. Essa tecnologia traz benefícios, como uma considerável redução do tempo de diagnóstico e aumento na precisão das avaliações clínicas, facilitando a identificação precoce de casos de TB em crianças. Além disso, ao integrar funcionalidades de IA, o protótipo apoia os profissionais de enfermagem na identificação e no monitoramento contínuo dos pacientes, contribuindo para seguimento adequado e manejo eficaz da doença. Dessa forma, ele fortalece as práticas de enfermagem e melhora a qualidade do cuidado oferecido na Atenção Primária à Saúde.

CONCLUSÕES

O protótipo TB Kids é uma proposta transformadora para atuação da enfermagem no controle da TB infantil, já que tecnologias que utilizam IA para apoio ao diagnóstico da TB para essa população são restritas e a maior amplitude de atuação do enfermeiro neste campo precisa ser consolidada. Além da avaliação para TB ativa, tem como diferencial a possibilidade de investigação para a forma latente da doença como uma ferramenta completa e dinâmica que oferece ao profissional uma aplicação para continuidade e qualidade da assistência. Outro avanço que a tecnologia carrega é a de propor aos profissionais o acesso a materiais educativos para capacitação e aperfeiçoamento do conhecimento, sabendo que tecnologias com suporte educacional são dispositivos fundamentais para a qualidade do cuidado, além de foco privilegiado da intervenção de enfermagem.

Conclui-se que o protótipo TB Kids representa um avanço significativo no enfrentamento da TB pulmonar infantil. A escassez de ferramentas digitais de apoio ao diagnóstico para crianças torna o TB Kids uma ferramenta inovadora e potencializadora no contexto da saúde pública. Contudo, validar ferramentas inteligentes para uso em cenários reais é desafiador, visto que persiste como limitação a disponibilidade de bancos de imagens acurados para essa faixa etária. Dessa maneira, mais estudos se fazem necessários, e as contribuições deste produto tecnológico não pretendem substituir especialistas humanos.

Funding Statement

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Processo n° 408158/2021-2/CNPq e Fundação de Amparo à Pesquisa do Estado do Amazonas (FAPEAM) – bolsa de mestrado.

Footnotes

FOMENTO

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Processo n° 408158/2021-2/CNPq e Fundação de Amparo à Pesquisa do Estado do Amazonas (FAPEAM) – bolsa de mestrado.


Articles from Revista Brasileira de Enfermagem are provided here courtesy of Associação Brasileira de Enfermagem

RESOURCES