Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2004 Jun;112(8):814–819. doi: 10.1289/ehp.6578

Bioassay-directed fractionation and salmonella mutagenicity of automobile and forklift diesel exhaust particles.

David M DeMarini 1, Lance R Brooks 1, Sarah H Warren 1, Takahiro Kobayashi 1, M Ian Gilmour 1, Pramila Singh 1
PMCID: PMC1242006  PMID: 15175166

Abstract

Many pulmonary toxicity studies of diesel exhaust particles (DEPs) have used an automobile-generated sample (A-DEPs) whose mutagenicity has not been reported. In contrast, many mutagenicity studies of DEPs have used a forklift-generated sample (SRM 2975) that has been evaluated in only a few pulmonary toxicity studies. Therefore, we evaluated the mutagenicity of both DEPs in Salmonella coupled to a bioassay-directed fractionation. The percentage of extractable organic material (EOM) was 26.3% for A-DEPs and 2% for SRM 2975. Most of the A-EOM (~55%) eluted in the hexane fraction, reflecting the presence of alkanes and alkenes, typical of uncombusted fuel. In contrast, most of the SRM 2975 EOM (~58%) eluted in the polar methanol fraction, indicative of oxygenated and/or nitrated organics derived from combustion. Most of the direct-acting, base-substitution activity of the A-EOM eluted in the hexane/dichloromethane (DCM) fraction, but this activity eluted in the polar methanol fraction for the SRM 2975 EOM. The direct-acting frameshift mutagenicity eluted across fractions of A-EOM, whereas > 80% eluted only in the DCM fraction of SRM 2975 EOM. The A-DEPs were more mutagenic than SRM 2975 per mass of particle, having 227 times more polycyclic aromatic hydrocarbon-type and 8-45 more nitroarene-type mutagenic activity. These differences were associated with the different conditions under which the two DEP samples were generated and collected. A comprehensive understanding of the mechanisms responsible for the health effects of DEPs requires the evaluation of DEP standards for a variety of end points, and our results highlight the need for multidisciplinary studies on a variety of representative samples of DEPs.

Full Text

The Full Text of this article is available as a PDF (124.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Austin A. C., Claxton L. D., Lewtas J. Mutagenicity of the fractionated organic emissions from diesel, cigarette smoke condensate, coke oven, and roofing tar in the Ames assay. Environ Mutagen. 1985;7(4):471–487. doi: 10.1002/em.2860070407. [DOI] [PubMed] [Google Scholar]
  2. Bechtold W. E., Dutcher J. S., Brooks A. L., Henderson T. R. Fractionation of diesel particle extracts by sephadex LH-20 and thin-layer chromatography. J Appl Toxicol. 1985 Oct;5(5):295–300. doi: 10.1002/jat.2550050507. [DOI] [PubMed] [Google Scholar]
  3. Bechtold W. E., Dutcher J. S., Mokler B. V., Lopez J. A., Wolf I., Li A. P., Henderson T. R., McClellan R. O. Chemical and biological properties of diesel exhaust particles collected during selected segments of a simulated driving cycle. Fundam Appl Toxicol. 1984 Jun;4(3 Pt 1):370–377. doi: 10.1016/0272-0590(84)90194-5. [DOI] [PubMed] [Google Scholar]
  4. Belisario M. A., Buonocore V., De Marinis E., De Lorenzo F. Biological availability of mutagenic compounds adsorbed onto diesel exhaust particulate. Mutat Res. 1984 Jan;135(1):1–9. doi: 10.1016/0165-1218(84)90142-3. [DOI] [PubMed] [Google Scholar]
  5. Clark C. R., Henderson T. R., Royer R. E., Brooks A. L., McClellan R. O., Marshall W. F., Naman T. M. Mutagenicity of diesel exhaust particle extracts: influence of fuel composition in two diesel engines. Fundam Appl Toxicol. 1982 Jan-Feb;2(1):38–43. doi: 10.1016/s0272-0590(82)80062-6. [DOI] [PubMed] [Google Scholar]
  6. Clark C. R., Royer R. E., Brooks A. L., McClellan R. O., Marshal W. F., Naman T. M., Seizinger D. E. Mutagenicity of diesel exhaust particle extracts: influence of car type. Fundam Appl Toxicol. 1981 May-Jun;1(3):260–265. doi: 10.1016/s0272-0590(81)80125-x. [DOI] [PubMed] [Google Scholar]
  7. Claxton L. D., Barnes H. M. The mutagenicity of diesel-exhaust particle extracts collected under smog-chamber conditions using the Salmonella typhimurium test system. Mutat Res. 1981 Mar;88(3):255–272. doi: 10.1016/0165-1218(81)90037-9. [DOI] [PubMed] [Google Scholar]
  8. Claxton L. D. Characterization of automotive emissions by bacterial mutagenesis bioassay: a review. Environ Mutagen. 1983;5(4):609–631. doi: 10.1002/em.2860050410. [DOI] [PubMed] [Google Scholar]
  9. Courtois Y., Molinier B., Pasquereau M., Degobert P., Festy B. Influence des conditions de fonctionnement d'un moteur diesel sur les effets mutagènes de ses effluents. Sci Total Environ. 1993 Jun 25;134(1-3):61–70. doi: 10.1016/0048-9697(93)90339-8. [DOI] [PubMed] [Google Scholar]
  10. Crebelli R., Conti L., Crochi B., Carere A., Bertoli C., Del Giacomo N. The effect of fuel composition on the mutagenicity of diesel engine exhaust. Mutat Res. 1995 Mar;346(3):167–172. doi: 10.1016/0165-7992(95)90049-7. [DOI] [PubMed] [Google Scholar]
  11. Crebelli R., Fuselli S., Conti G., Conti L., Carere A. Mutagenicity spectra in bacterial strains of airborne and engine exhaust particulate extracts. Mutat Res. 1991 Dec;261(4):237–248. doi: 10.1016/0165-1218(91)90039-o. [DOI] [PubMed] [Google Scholar]
  12. DeMarini D. M., Shelton M. L., Bell D. A. Mutation spectra in Salmonella of complex mixtures: comparison of urban air to benzo[a]pyrene. Environ Mol Mutagen. 1994;24(4):262–275. doi: 10.1002/em.2850240403. [DOI] [PubMed] [Google Scholar]
  13. Diaz-Sanchez D. The role of diesel exhaust particles and their associated polyaromatic hydrocarbons in the induction of allergic airway disease. Allergy. 1997;52(38 Suppl):52–58. doi: 10.1111/j.1398-9995.1997.tb04871.x. [DOI] [PubMed] [Google Scholar]
  14. Dick Colin A. J., Brown David M., Donaldson Ken, Stone Vicki. The role of free radicals in the toxic and inflammatory effects of four different ultrafine particle types. Inhal Toxicol. 2003 Jan;15(1):39–52. doi: 10.1080/08958370304454. [DOI] [PubMed] [Google Scholar]
  15. Donaldson K., Beswick P. H., Gilmour P. S. Free radical activity associated with the surface of particles: a unifying factor in determining biological activity? Toxicol Lett. 1996 Nov;88(1-3):293–298. doi: 10.1016/0378-4274(96)03752-6. [DOI] [PubMed] [Google Scholar]
  16. Einistö P., Watanabe M., Ishidate M., Jr, Nohmi T. Mutagenicity of 30 chemicals in Salmonella typhimurium strains possessing different nitroreductase or O-acetyltransferase activities. Mutat Res. 1991 Jan;259(1):95–102. doi: 10.1016/0165-1218(91)90113-z. [DOI] [PubMed] [Google Scholar]
  17. Hayakawa K., Nakamura A., Terai N., Kizu R., Ando K. Nitroarene concentrations and direct-acting mutagenicity of diesel exhaust particulates fractionated by silica-gel column chromatography. Chem Pharm Bull (Tokyo) 1997 Nov;45(11):1820–1822. doi: 10.1248/cpb.45.1820. [DOI] [PubMed] [Google Scholar]
  18. Hughes T. J., Lewtas J., Claxton L. D. Development of a standard reference material for diesel mutagenicity in the Salmonella plate incorporation assay. Mutat Res. 1997 Jul 14;391(3):243–258. doi: 10.1016/s1383-5718(97)00075-2. [DOI] [PubMed] [Google Scholar]
  19. Kawasaki S., Takizawa H., Takami K., Desaki M., Okazaki H., Kasama T., Kobayashi K., Yamamoto K., Nakahara K., Tanaka M. Benzene-extracted components are important for the major activity of diesel exhaust particles: effect on interleukin-8 gene expression in human bronchial epithelial cells. Am J Respir Cell Mol Biol. 2001 Apr;24(4):419–426. doi: 10.1165/ajrcmb.24.4.4085. [DOI] [PubMed] [Google Scholar]
  20. Keane M. J., Xing S. G., Harrison J. C., Ong T., Wallace W. E. Genotoxicity of diesel-exhaust particles dispersed in simulated pulmonary surfactant. Mutat Res. 1991 Jul;260(3):233–238. doi: 10.1016/0165-1218(91)90031-g. [DOI] [PubMed] [Google Scholar]
  21. King L. C., Kohan M. J., Austin A. C., Claxton L. D., Huisingh J. L. Evaluation of the release of mutagens from diesel particles in the presence of physiological fluids. Environ Mutagen. 1981;3(2):109–121. doi: 10.1002/em.2860030203. [DOI] [PubMed] [Google Scholar]
  22. Kobayashi T., Ito T. Diesel exhaust particulates induce nasal mucosal hyperresponsiveness to inhaled histamine aerosol. Fundam Appl Toxicol. 1995 Sep;27(2):195–202. doi: 10.1006/faat.1995.1124. [DOI] [PubMed] [Google Scholar]
  23. Lies K. H., Hartung A., Postulka A., Gring H., Schulze J. Composition of diesel exhaust with particular reference to particle bound organics including formation of artifacts. Dev Toxicol Environ Sci. 1986;13:65–82. [PubMed] [Google Scholar]
  24. Løvik M., Høgseth A. K., Gaarder P. I., Hagemann R., Eide I. Diesel exhaust particles and carbon black have adjuvant activity on the local lymph node response and systemic IgE production to ovalbumin. Toxicology. 1997 Aug 15;121(2):165–178. doi: 10.1016/s0300-483x(97)00075-9. [DOI] [PubMed] [Google Scholar]
  25. Madden M. C., Richards J. H., Dailey L. A., Hatch G. E., Ghio A. J. Effect of ozone on diesel exhaust particle toxicity in rat lung. Toxicol Appl Pharmacol. 2000 Oct 15;168(2):140–148. doi: 10.1006/taap.2000.9024. [DOI] [PubMed] [Google Scholar]
  26. Maron D. M., Ames B. N. Revised methods for the Salmonella mutagenicity test. Mutat Res. 1983 May;113(3-4):173–215. doi: 10.1016/0165-1161(83)90010-9. [DOI] [PubMed] [Google Scholar]
  27. Mauderly J. L. Diesel emissions: is more health research still needed? Toxicol Sci. 2001 Jul;62(1):6–9. doi: 10.1093/toxsci/62.1.6. [DOI] [PubMed] [Google Scholar]
  28. McCoy E. C., Anders M., Rosenkranz H. S. The basis of the insensitivity of Salmonella typhimurium strain TA98/1,8-DNP6 to the mutagenic action of nitroarenes. Mutat Res. 1983 Jul;121(1):17–23. doi: 10.1016/0165-7992(83)90081-7. [DOI] [PubMed] [Google Scholar]
  29. Montreuil C. N., Ball J. C., Gorse R. A., Jr, Young W. C. Solvent extraction efficiencies of mutagenic components from diesel particles. Mutat Res. 1992 Jun;282(2):89–92. doi: 10.1016/0165-7992(92)90079-w. [DOI] [PubMed] [Google Scholar]
  30. Nakagawa R., Kitamori S., Horikawa K., Nakashima K., Tokiwa H. Identification of dinitropyrenes in diesel-exhaust particles. Their probable presence as the major mutagens. Mutat Res. 1983 Dec;124(3-4):201–211. doi: 10.1016/0165-1218(83)90191-x. [DOI] [PubMed] [Google Scholar]
  31. Petersen B. A., Chuang C. C. Methodology of fractionation and partition of diesel exhaust particulate samples. Dev Toxicol Environ Sci. 1982;10:51–67. [PubMed] [Google Scholar]
  32. Pope C. Arden, 3rd, Burnett Richard T., Thun Michael J., Calle Eugenia E., Krewski Daniel, Ito Kazuhiko, Thurston George D. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA. 2002 Mar 6;287(9):1132–1141. doi: 10.1001/jama.287.9.1132. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Rosenkranz H. S., McCoy E. C., Mermelstein R., Speck W. T. A cautionary note the use of nitroreductase-deficient strains of Salmonella typhimurium for the detection of nitroarenes as mutagens in complex mixtures including diesel exhausts. Mutat Res. 1981 Mar;91(2):103–105. doi: 10.1016/0165-7992(81)90080-4. [DOI] [PubMed] [Google Scholar]
  34. Rosenkranz H. S. Mutagenic nitroarenes, diesel emissions, particulate-induced mutations and cancer: an essay on cancer-causation by a moving target. Mutat Res. 1996 Feb;367(2):65–72. doi: 10.1016/0165-1218(95)00066-6. [DOI] [PubMed] [Google Scholar]
  35. Sagai M., Saito H., Ichinose T., Kodama M., Mori Y. Biological effects of diesel exhaust particles. I. In vitro production of superoxide and in vivo toxicity in mouse. Free Radic Biol Med. 1993 Jan;14(1):37–47. doi: 10.1016/0891-5849(93)90507-q. [DOI] [PubMed] [Google Scholar]
  36. Salmeen I., Durisin A. M., Prater T. J., Riley T., Schuetzle D. Contribution of 1-nitropyrene to direct-acting Ames assay mutagenicities of diesel particulate extracts. Mutat Res. 1982 Apr;104(1-3):17–23. doi: 10.1016/0165-7992(82)90114-2. [DOI] [PubMed] [Google Scholar]
  37. Savard S., Otson R., Douglas G. R. Mutagenicity and chemical analysis of sequential organic extracts of airborne particulates. Mutat Res. 1992 Jan-Mar;276(1-2):101–115. doi: 10.1016/0165-1110(92)90059-i. [DOI] [PubMed] [Google Scholar]
  38. Schuetzle D., Lewtas J. Bioassay-directed chemical analysis in environmental research. Anal Chem. 1986 Sep;58(11):1060A–1075A. doi: 10.1021/ac00124a001. [DOI] [PubMed] [Google Scholar]
  39. Schuetzle D. Sampling of vehicle emissions for chemical analysis and biological testing. Environ Health Perspect. 1983 Jan;47:65–80. doi: 10.1289/ehp.834765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Seagrave JeanClare, McDonald Jacob D., Gigliotti Andrew P., Nikula Kristen J., Seilkop Steven K., Gurevich Michael, Mauderly Joe L. Mutagenicity and in vivo toxicity of combined particulate and semivolatile organic fractions of gasoline and diesel engine emissions. Toxicol Sci. 2002 Dec;70(2):212–226. doi: 10.1093/toxsci/70.2.212. [DOI] [PubMed] [Google Scholar]
  41. Singh Pramila, DeMarini David M., Dick Colin A. J., Tabor Dennis G., Ryan Jeff V., Linak William P., Kobayashi Takahiro, Gilmour M. Ian. Sample characterization of automobile and forklift diesel exhaust particles and comparative pulmonary toxicity in mice. Environ Health Perspect. 2004 Jun;112(8):820–825. doi: 10.1289/ehp.6579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Sjögren M., Li H., Banner C., Rafter J., Westerholm R., Rannug U. Influence of physical and chemical characteristics of diesel fuels and exhaust emissions on biological effects of particle extracts: a multivariate statistical analysis of ten diesel fuels. Chem Res Toxicol. 1996 Jan-Feb;9(1):197–207. doi: 10.1021/tx950095w. [DOI] [PubMed] [Google Scholar]
  43. Strandell M., Zakrisson S., Alsberg T., Westerholm R., Winquist L., Rannug U. Chemical analysis and biological testing of a polar fraction of ambient air, diesel engine, and gasoline engine particulate extracts. Environ Health Perspect. 1994 Oct;102 (Suppl 4):85–92. doi: 10.1289/ehp.94102s485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Sydbom A., Blomberg A., Parnia S., Stenfors N., Sandström T., Dahlén S. E. Health effects of diesel exhaust emissions. Eur Respir J. 2001 Apr;17(4):733–746. doi: 10.1183/09031936.01.17407330. [DOI] [PubMed] [Google Scholar]
  45. Tokiwa H., Ohnishi Y. Mutagenicity and carcinogenicity of nitroarenes and their sources in the environment. Crit Rev Toxicol. 1986;17(1):23–60. doi: 10.3109/10408448609037070. [DOI] [PubMed] [Google Scholar]
  46. Tsien A., Diaz-Sanchez D., Ma J., Saxon A. The organic component of diesel exhaust particles and phenanthrene, a major polyaromatic hydrocarbon constituent, enhances IgE production by IgE-secreting EBV-transformed human B cells in vitro. Toxicol Appl Pharmacol. 1997 Feb;142(2):256–263. doi: 10.1006/taap.1996.8063. [DOI] [PubMed] [Google Scholar]
  47. Watanabe M., Ishidate M., Jr, Nohmi T. A sensitive method for the detection of mutagenic nitroarenes: construction of nitroreductase-overproducing derivatives of Salmonella typhimurium strains TA98 and TA100. Mutat Res. 1989 Aug;216(4):211–220. doi: 10.1016/0165-1161(89)90007-1. [DOI] [PubMed] [Google Scholar]
  48. Watanabe M., Ishidate M., Jr, Nohmi T. Sensitive method for the detection of mutagenic nitroarenes and aromatic amines: new derivatives of Salmonella typhimurium tester strains possessing elevated O-acetyltransferase levels. Mutat Res. 1990 Oct;234(5):337–348. doi: 10.1016/0165-1161(90)90044-o. [DOI] [PubMed] [Google Scholar]
  49. Westerholm R., Christensen A., Törnqvist M., Ehrenberg L., Rannug U., Sjögren M., Rafter J., Soontjens C., Almén J., Grägg K. Comparison of exhaust emissions from Swedish environmental classified diesel fuel (MK1) and European Program on Emissions, Fuels and Engine Technologies (EPEFE) reference fuel: a chemical and biological characterization, with viewpoints on cancer risk. Environ Sci Technol. 2001 May 1;35(9):1748–1754. doi: 10.1021/es000113i. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES