Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2004 Jun;112(8):820–825. doi: 10.1289/ehp.6579

Sample characterization of automobile and forklift diesel exhaust particles and comparative pulmonary toxicity in mice.

Pramila Singh 1, David M DeMarini 1, Colin A J Dick 1, Dennis G Tabor 1, Jeff V Ryan 1, William P Linak 1, Takahiro Kobayashi 1, M Ian Gilmour 1
PMCID: PMC1242007  PMID: 15175167

Abstract

Two samples of diesel exhaust particles (DEPs) predominate in health effects research: an automobile-derived DEP (A-DEP) sample and the National Institute of Standards Technology standard reference material (SRM 2975) generated from a forklift engine. A-DEPs have been tested extensively for their effects on pulmonary inflammation and exacerbation of allergic asthmalike responses. In contrast, SRM 2975 has been tested thoroughly for its genotoxicity. In the present study, we combined physical and chemical analyses of both DEP samples with pulmonary toxicity testing in CD-1 mice to compare the two materials and to make associations between their physicochemical properties and their biologic effects. A-DEPs had more than 10 times the amount of extractable organic material and less than one-sixth the amount of elemental carbon compared with SRM 2975. Aspiration of 100 micro g of either DEP sample in saline produced mild acute lung injury; however, A-DEPs induced macrophage influx and activation, whereas SRM 2975 enhanced polymorphonuclear cell inflammation. A-DEPs stimulated an increase in interleukin-6 (IL-6), tumor necrosis factor alpha, macrophage inhibitory protein-2, and the TH2 cytokine IL-5, whereas SRM 2975 only induced significant levels of IL-6. Fractionated organic extracts of the same quantity of DEPs (100 micro g) did not have a discernable effect on lung responses and will require further study. The disparate results obtained highlight the need for chemical, physical, and source characterization of particle samples under investigation. Multidisciplinary toxicity testing of diesel emissions derived from a variety of generation and collection conditions is required to meaningfully assess the health hazards associated with exposures to DEPs. Key words: automobile, diesel exhaust particles, forklift, mice, pulmonary toxicity, SRM 2975.

Full Text

The Full Text of this article is available as a PDF (343.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boland S., Baeza-Squiban A., Fournier T., Houcine O., Gendron M. C., Chévrier M., Jouvenot G., Coste A., Aubier M., Marano F. Diesel exhaust particles are taken up by human airway epithelial cells in vitro and alter cytokine production. Am J Physiol. 1999 Apr;276(4 Pt 1):L604–L613. doi: 10.1152/ajplung.1999.276.4.L604. [DOI] [PubMed] [Google Scholar]
  2. Claxton L. D. Characterization of automotive emissions by bacterial mutagenesis bioassay: a review. Environ Mutagen. 1983;5(4):609–631. doi: 10.1002/em.2860050410. [DOI] [PubMed] [Google Scholar]
  3. DeMarini David M., Brooks Lance R., Warren Sarah H., Kobayashi Takahiro, Gilmour M. Ian, Singh Pramila. Bioassay-directed fractionation and salmonella mutagenicity of automobile and forklift diesel exhaust particles. Environ Health Perspect. 2004 Jun;112(8):814–819. doi: 10.1289/ehp.6578. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Diaz-Sanchez D. The role of diesel exhaust particles and their associated polyaromatic hydrocarbons in the induction of allergic airway disease. Allergy. 1997;52(38 Suppl):52–58. doi: 10.1111/j.1398-9995.1997.tb04871.x. [DOI] [PubMed] [Google Scholar]
  5. Dick Colin A. J., Brown David M., Donaldson Ken, Stone Vicki. The role of free radicals in the toxic and inflammatory effects of four different ultrafine particle types. Inhal Toxicol. 2003 Jan;15(1):39–52. doi: 10.1080/08958370304454. [DOI] [PubMed] [Google Scholar]
  6. Donaldson K., Beswick P. H., Gilmour P. S. Free radical activity associated with the surface of particles: a unifying factor in determining biological activity? Toxicol Lett. 1996 Nov;88(1-3):293–298. doi: 10.1016/0378-4274(96)03752-6. [DOI] [PubMed] [Google Scholar]
  7. Driscoll K. E., Costa D. L., Hatch G., Henderson R., Oberdorster G., Salem H., Schlesinger R. B. Intratracheal instillation as an exposure technique for the evaluation of respiratory tract toxicity: uses and limitations. Toxicol Sci. 2000 May;55(1):24–35. doi: 10.1093/toxsci/55.1.24. [DOI] [PubMed] [Google Scholar]
  8. Foster W. M., Walters D. M., Longphre M., Macri K., Miller L. M. Methodology for the measurement of mucociliary function in the mouse by scintigraphy. J Appl Physiol (1985) 2001 Mar;90(3):1111–1117. doi: 10.1152/jappl.2001.90.3.1111. [DOI] [PubMed] [Google Scholar]
  9. Granum Berit, Løvik Martinus. The effect of particles on allergic immune responses. Toxicol Sci. 2002 Jan;65(1):7–17. doi: 10.1093/toxsci/65.1.7. [DOI] [PubMed] [Google Scholar]
  10. Heo Y., Saxon A., Hankinson O. Effect of diesel exhaust particles and their components on the allergen-specific IgE and IgG1 response in mice. Toxicology. 2001 Feb 28;159(3):143–158. doi: 10.1016/s0300-483x(00)00418-2. [DOI] [PubMed] [Google Scholar]
  11. Hughes T. J., Lewtas J., Claxton L. D. Development of a standard reference material for diesel mutagenicity in the Salmonella plate incorporation assay. Mutat Res. 1997 Jul 14;391(3):243–258. doi: 10.1016/s1383-5718(97)00075-2. [DOI] [PubMed] [Google Scholar]
  12. Kawasaki S., Takizawa H., Takami K., Desaki M., Okazaki H., Kasama T., Kobayashi K., Yamamoto K., Nakahara K., Tanaka M. Benzene-extracted components are important for the major activity of diesel exhaust particles: effect on interleukin-8 gene expression in human bronchial epithelial cells. Am J Respir Cell Mol Biol. 2001 Apr;24(4):419–426. doi: 10.1165/ajrcmb.24.4.4085. [DOI] [PubMed] [Google Scholar]
  13. Kobayashi T., Ito T. Diesel exhaust particulates induce nasal mucosal hyperresponsiveness to inhaled histamine aerosol. Fundam Appl Toxicol. 1995 Sep;27(2):195–202. doi: 10.1006/faat.1995.1124. [DOI] [PubMed] [Google Scholar]
  14. Li Ning, Sioutas Constantinos, Cho Arthur, Schmitz Debra, Misra Chandan, Sempf Joan, Wang Meiying, Oberley Terry, Froines John, Nel Andre. Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environ Health Perspect. 2003 Apr;111(4):455–460. doi: 10.1289/ehp.6000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Løvik M., Høgseth A. K., Gaarder P. I., Hagemann R., Eide I. Diesel exhaust particles and carbon black have adjuvant activity on the local lymph node response and systemic IgE production to ovalbumin. Toxicology. 1997 Aug 15;121(2):165–178. doi: 10.1016/s0300-483x(97)00075-9. [DOI] [PubMed] [Google Scholar]
  16. Madden M. C., Richards J. H., Dailey L. A., Hatch G. E., Ghio A. J. Effect of ozone on diesel exhaust particle toxicity in rat lung. Toxicol Appl Pharmacol. 2000 Oct 15;168(2):140–148. doi: 10.1006/taap.2000.9024. [DOI] [PubMed] [Google Scholar]
  17. Mauderly J. L. Diesel emissions: is more health research still needed? Toxicol Sci. 2001 Jul;62(1):6–9. doi: 10.1093/toxsci/62.1.6. [DOI] [PubMed] [Google Scholar]
  18. Metzger J. M., Peterson L. B. Cyclosporin A enhances the pulmonary granuloma response induced by Schistosoma mansoni eggs. Immunopharmacology. 1988 Mar-Apr;15(2):103–115. doi: 10.1016/0162-3109(88)90057-4. [DOI] [PubMed] [Google Scholar]
  19. Miller N. J., Rice-Evans C., Davies M. J., Gopinathan V., Milner A. A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clin Sci (Lond) 1993 Apr;84(4):407–412. doi: 10.1042/cs0840407. [DOI] [PubMed] [Google Scholar]
  20. Miyabara Y., Takano H., Ichinose T., Lim H. B., Sagai M. Diesel exhaust enhances allergic airway inflammation and hyperresponsiveness in mice. Am J Respir Crit Care Med. 1998 Apr;157(4 Pt 1):1138–1144. doi: 10.1164/ajrccm.157.4.9708066. [DOI] [PubMed] [Google Scholar]
  21. Nel A. E., Diaz-Sanchez D., Li N. The role of particulate pollutants in pulmonary inflammation and asthma: evidence for the involvement of organic chemicals and oxidative stress. Curr Opin Pulm Med. 2001 Jan;7(1):20–26. doi: 10.1097/00063198-200101000-00004. [DOI] [PubMed] [Google Scholar]
  22. Pope C. Arden, 3rd, Burnett Richard T., Thun Michael J., Calle Eugenia E., Krewski Daniel, Ito Kazuhiko, Thurston George D. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA. 2002 Mar 6;287(9):1132–1141. doi: 10.1001/jama.287.9.1132. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Rosenkranz H. S. Mutagenic nitroarenes, diesel emissions, particulate-induced mutations and cancer: an essay on cancer-causation by a moving target. Mutat Res. 1996 Feb;367(2):65–72. doi: 10.1016/0165-1218(95)00066-6. [DOI] [PubMed] [Google Scholar]
  24. Sagai M., Saito H., Ichinose T., Kodama M., Mori Y. Biological effects of diesel exhaust particles. I. In vitro production of superoxide and in vivo toxicity in mouse. Free Radic Biol Med. 1993 Jan;14(1):37–47. doi: 10.1016/0891-5849(93)90507-q. [DOI] [PubMed] [Google Scholar]
  25. Salvi S. S., Nordenhall C., Blomberg A., Rudell B., Pourazar J., Kelly F. J., Wilson S., Sandström T., Holgate S. T., Frew A. J. Acute exposure to diesel exhaust increases IL-8 and GRO-alpha production in healthy human airways. Am J Respir Crit Care Med. 2000 Feb;161(2 Pt 1):550–557. doi: 10.1164/ajrccm.161.2.9905052. [DOI] [PubMed] [Google Scholar]
  26. Schuetzle D. Sampling of vehicle emissions for chemical analysis and biological testing. Environ Health Perspect. 1983 Jan;47:65–80. doi: 10.1289/ehp.834765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Seagrave JeanClare, McDonald Jacob D., Gigliotti Andrew P., Nikula Kristen J., Seilkop Steven K., Gurevich Michael, Mauderly Joe L. Mutagenicity and in vivo toxicity of combined particulate and semivolatile organic fractions of gasoline and diesel engine emissions. Toxicol Sci. 2002 Dec;70(2):212–226. doi: 10.1093/toxsci/70.2.212. [DOI] [PubMed] [Google Scholar]
  28. Sydbom A., Blomberg A., Parnia S., Stenfors N., Sandström T., Dahlén S. E. Health effects of diesel exhaust emissions. Eur Respir J. 2001 Apr;17(4):733–746. doi: 10.1183/09031936.01.17407330. [DOI] [PubMed] [Google Scholar]
  29. Takano H., Yoshikawa T., Ichinose T., Miyabara Y., Imaoka K., Sagai M. Diesel exhaust particles enhance antigen-induced airway inflammation and local cytokine expression in mice. Am J Respir Crit Care Med. 1997 Jul;156(1):36–42. doi: 10.1164/ajrccm.156.1.9610054. [DOI] [PubMed] [Google Scholar]
  30. Tsien A., Diaz-Sanchez D., Ma J., Saxon A. The organic component of diesel exhaust particles and phenanthrene, a major polyaromatic hydrocarbon constituent, enhances IgE production by IgE-secreting EBV-transformed human B cells in vitro. Toxicol Appl Pharmacol. 1997 Feb;142(2):256–263. doi: 10.1006/taap.1996.8063. [DOI] [PubMed] [Google Scholar]
  31. Weir Erica. Diesel exhaust, school buses and children's health. CMAJ. 2002 Sep 3;167(5):505–505. [PMC free article] [PubMed] [Google Scholar]
  32. Wilhelm Michelle, Ritz Beate. Residential proximity to traffic and adverse birth outcomes in Los Angeles county, California, 1994-1996. Environ Health Perspect. 2003 Feb;111(2):207–216. doi: 10.1289/ehp.5688. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES