Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2004 Jun;112(8):826–833. doi: 10.1289/ehp.6809

Relationships between PCBs and thyroid hormones and retinol in female and male polar bears.

Marte Braathen 1, Andrew E Derocher 1, Øystein Wiig 1, Eugen G Sørmo 1, Elisabeth Lie 1, Janneche U Skaare 1, Bjørn Munro Jenssen 1
PMCID: PMC1242008  PMID: 15175168

Abstract

We studied the relationships between polychlorinated biphenyls (PCBs) and thyroid hormones (THs) and retinol within two groups of female polar bears (Ursus maritimus), females with cubs of the year (FWCOY) and females without cubs of the year (FWOCOY), and within a group of males. Concentrations of five of the six quantified PCB congeners, i.e., PCB-99, PCB-153, PCB-156, PCB-180, PCB-194 (sigma PCB5), correlated with each other, whereas the concentrations of PCB-118 did not correlate with the other congeners. sigma PCB5 and PCB-118 did not differ between the three different groups of polar bears, and the plasma levels ranged from 16.7 to 203.2 ng/g wet weight (ww) for sigma PCB5 and from 0.09 to 0.93 ng/g ww for PCB-118. PCBs did not affect the retinol status in any of the three groups. In FWCOY, we found negative correlations between sigma PCB5 and the three TH variables free thyroxin (FT4) (r2 = 0.35), free triiodothyronine (FT3) (r2 = 0.30), and the total T4:total T3 ratio (TT4:TT3) (r2 = 0.92). In FWOCOY, sigma PCB5 was negatively correlated to TT4 (r2 = 0.14) and positively correlated to TT3:FT3 (r2 = 0.31), whereas PCB-118 was positively correlated to FT3 (r2 = 0.21) and negatively correlated to TT3:FT3 (r2 = 0.26). In males, sigma PCB5 was negatively correlated to FT3 (r2 = 0.56) and positively correlated to FT4:FT3 (r2 = 0.78), whereas PCB-118 was negatively correlated to FT4:FT3 (r2 = 0.53). Thus, PCBs affected five TH variables in the female polar bears (TT4, FT4, FT3, TT3:FT3, TT4:TT3), but PCBs affected only two TH variables in males (FT3, FT4:FT3). Female polar bears could be more susceptible to TH-related effects of PCBs than are males. PCBs also affected T3 to a larger degree than T4.

Full Text

The Full Text of this article is available as a PDF (159.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barrie L. A., Gregor D., Hargrave B., Lake R., Muir D., Shearer R., Tracey B., Bidleman T. Arctic contaminants: sources, occurrence and pathways. Sci Total Environ. 1992 Jul 15;122(1-2):1–74. doi: 10.1016/0048-9697(92)90245-n. [DOI] [PubMed] [Google Scholar]
  2. Beckmen K. B., Lowenstine L. J., Newman J., Hill J., Hanni K., Gerber J. Clinical and pathological characterization of northern elephant seal skin disease. J Wildl Dis. 1997 Jul;33(3):438–449. doi: 10.7589/0090-3558-33.3.438. [DOI] [PubMed] [Google Scholar]
  3. Bernhoft A., Wiig Ø, Skaare J. U. Organochlorines in polar bears (Ursus maritimus) at Svalbard. Environ Pollut. 1997;95(2):159–175. doi: 10.1016/s0269-7491(96)00122-4. [DOI] [PubMed] [Google Scholar]
  4. Brevik E. M. Gas chromatograhic method for the determination of organochlorine pesticides in human milk. Bull Environ Contam Toxicol. 1978 Mar;19(3):281–286. doi: 10.1007/BF01685799. [DOI] [PubMed] [Google Scholar]
  5. Brouwer A., Longnecker M. P., Birnbaum L. S., Cogliano J., Kostyniak P., Moore J., Schantz S., Winneke G. Characterization of potential endocrine-related health effects at low-dose levels of exposure to PCBs. Environ Health Perspect. 1999 Aug;107 (Suppl 4):639–649. doi: 10.1289/ehp.99107s4639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brouwer A., Morse D. C., Lans M. C., Schuur A. G., Murk A. J., Klasson-Wehler E., Bergman A., Visser T. J. Interactions of persistent environmental organohalogens with the thyroid hormone system: mechanisms and possible consequences for animal and human health. Toxicol Ind Health. 1998 Jan-Apr;14(1-2):59–84. doi: 10.1177/074823379801400107. [DOI] [PubMed] [Google Scholar]
  7. Cheek A. O., Kow K., Chen J., McLachlan J. A. Potential mechanisms of thyroid disruption in humans: interaction of organochlorine compounds with thyroid receptor, transthyretin, and thyroid-binding globulin. Environ Health Perspect. 1999 Apr;107(4):273–278. doi: 10.1289/ehp.99107273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chiba I., Sakakibara A., Goto Y., Isono T., Yamamoto Y., Iwata H., Tanabe S., Shimazaki K., Akahori F., Kazusaka A. Negative correlation between plasma thyroid hormone levels and chlorinated hydrocarbon levels accumulated in seals from the coast of Hokkaido, Japan. Environ Toxicol Chem. 2001 May;20(5):1092–1097. [PubMed] [Google Scholar]
  9. Chiovato L., Lapi P., Fiore E., Tonacchera M., Pinchera A. Thyroid autoimmunity and female gender. J Endocrinol Invest. 1993 May;16(5):384–391. doi: 10.1007/BF03348863. [DOI] [PubMed] [Google Scholar]
  10. DeVito M., Biegel L., Brouwer A., Brown S., Brucker-Davis F., Cheek A. O., Christensen R., Colborn T., Cooke P., Crissman J. Screening methods for thyroid hormone disruptors. Environ Health Perspect. 1999 May;107(5):407–415. doi: 10.1289/ehp.99107407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Derocher Andrew E., Wolkers Hans, Colborn Theo, Schlabach Martin, Larsen Thor S., Wiig Øystein. Contaminants in Svalbard polar bear samples archived since 1967 and possible population level effects. Sci Total Environ. 2003 Jan 1;301(1-3):163–174. doi: 10.1016/s0048-9697(02)00303-0. [DOI] [PubMed] [Google Scholar]
  12. Fisk A. T., Hobson K. A., Norstrom R. J. Influence of chemical and biological factors on trophic transfer of persistent organic pollutants in the northwater polynya marine food web. Environ Sci Technol. 2001 Feb 15;35(4):732–738. doi: 10.1021/es001459w. [DOI] [PubMed] [Google Scholar]
  13. Haave Marte, Ropstad Erik, Derocher Andrew E., Lie Elisabeth, Dahl Ellen, Wiig Øystein, Skaare Janneche U., Jenssen Bjørn Munro. Polychlorinated biphenyls and reproductive hormones in female polar bears at Svalbard. Environ Health Perspect. 2003 Apr;111(4):431–436. doi: 10.1289/ehp.5553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hagmar L., Rylander L., Dyremark E., Klasson-Wehler E., Erfurth E. M. Plasma concentrations of persistent organochlorines in relation to thyrotropin and thyroid hormone levels in women. Int Arch Occup Environ Health. 2001 Apr;74(3):184–188. doi: 10.1007/s004200000213. [DOI] [PubMed] [Google Scholar]
  15. Heaton S. N., Bursian S. J., Giesy J. P., Tillitt D. E., Render J. A., Jones P. D., Verbrugge D. A., Kubiak T. J., Aulerich R. J. Dietary exposure of mink to carp from Saginaw Bay, Michigan. 1. Effects on reproduction and survival, and the potential risks to wild mink populations. Arch Environ Contam Toxicol. 1995 Apr;28(3):334–343. doi: 10.1007/BF00213111. [DOI] [PubMed] [Google Scholar]
  16. Henriksen E. O., Wiig Ø, Skaare J. U., Gabrielsen G. W., Derocher A. E. Monitoring PCBs in polar bears: lessons learned from Svalbard. J Environ Monit. 2001 Oct;3(5):493–498. doi: 10.1039/b102683f. [DOI] [PubMed] [Google Scholar]
  17. Jacobson J. L., Jacobson S. W., Humphrey H. E. Effects of in utero exposure to polychlorinated biphenyls and related contaminants on cognitive functioning in young children. J Pediatr. 1990 Jan;116(1):38–45. doi: 10.1016/s0022-3476(05)81642-7. [DOI] [PubMed] [Google Scholar]
  18. Jenssen Bjørn M., Haugen Ove, Sørmo Eugen G., Skaare Janneche U. Negative relationship between PCBs and plasma retinol in low-contaminated free-ranging gray seal pups (Halichoerus grypus). Environ Res. 2003 Sep;93(1):79–87. doi: 10.1016/s0013-9351(03)00061-6. [DOI] [PubMed] [Google Scholar]
  19. Lans M. C., Spiertz C., Brouwer A., Koeman J. H. Different competition of thyroxine binding to transthyretin and thyroxine-binding globulin by hydroxy-PCBs, PCDDs and PCDFs. Eur J Pharmacol. 1994 Apr 4;270(2-3):129–136. doi: 10.1016/0926-6917(94)90054-x. [DOI] [PubMed] [Google Scholar]
  20. Letcher R. J., Norstrom R. J., Bergman A. Geographical distribution and identification of methyl sulphone PCB and DDE metabolites in pooled polar bear (Ursus maritimus) adipose tissue from western hemisphere arctic and subarctic regions. Sci Total Environ. 1995 Jan 15;160-161:409–420. doi: 10.1016/0048-9697(95)04374-a. [DOI] [PubMed] [Google Scholar]
  21. Letcher R. J., Norstrom R. J., Lin S., Ramsay M. A., Bandiera S. M. Immunoquantitation and microsomal monooxygenase activities of hepatic cytochromes P4501A and P4502B and chlorinated hydrocarbon contaminant levels in polar bear (Ursus maritimus). Toxicol Appl Pharmacol. 1996 Apr;137(2):127–140. doi: 10.1006/taap.1996.0065. [DOI] [PubMed] [Google Scholar]
  22. Lie E., Bernhoft A., Riget F., Belikov S. E., Boltunov A. N., Derocher A. E., Garner G. W., Wiig Ø, Skaare J. U. Geographical distribution of organochlorine pesticides (OCPs) in polar bears (Ursus maritimus) in the Norwegian and Russian Arctic. Sci Total Environ. 2003 May 1;306(1-3):159–170. doi: 10.1016/S0048-9697(02)00490-4. [DOI] [PubMed] [Google Scholar]
  23. Norstrom R. J., Belikov S. E., Born E. W., Garner G. W., Malone B., Olpinski S., Ramsay M. A., Schliebe S., Stirling I., Stishov M. S. Chlorinated hydrocarbon contaminants in polar bears from eastern Russia, North America, Greenland, and Svalbard: biomonitoring of Arctic pollution. Arch Environ Contam Toxicol. 1998 Aug;35(2):354–367. doi: 10.1007/s002449900387. [DOI] [PubMed] [Google Scholar]
  24. Norstrom R. J., Muir D. C. Chlorinated hydrocarbon contaminants in arctic marine mammals. Sci Total Environ. 1994 Sep 16;154(2-3):107–128. doi: 10.1016/0048-9697(94)90082-5. [DOI] [PubMed] [Google Scholar]
  25. Olsen Gro H., Mauritzen Mette, Derocher Andrew E., Sørmo Eugen G., Skaare Janneche U., Wiig Oystein, Jenssen Bjørn Munro. Space-use strategy is an important determinant of PCB concentrations in female polar bears in the Barents Sea. Environ Sci Technol. 2003 Nov 1;37(21):4919–4924. doi: 10.1021/es034380a. [DOI] [PubMed] [Google Scholar]
  26. Osius N., Karmaus W., Kruse H., Witten J. Exposure to polychlorinated biphenyls and levels of thyroid hormones in children. Environ Health Perspect. 1999 Oct;107(10):843–849. doi: 10.1289/ehp.99107843. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Reijnders P. J. Reproductive failure in common seals feeding on fish from polluted coastal waters. Nature. 1986 Dec 4;324(6096):456–457. doi: 10.1038/324456a0. [DOI] [PubMed] [Google Scholar]
  28. Rolland R. M. A review of chemically-induced alterations in thyroid and vitamin A status from field studies of wildlife and fish. J Wildl Dis. 2000 Oct;36(4):615–635. doi: 10.7589/0090-3558-36.4.615. [DOI] [PubMed] [Google Scholar]
  29. Schantz S. L. Developmental neurotoxicity of PCBs in humans: what do we know and where do we go from here? Neurotoxicol Teratol. 1996 May-Jun;18(3):217–276. doi: 10.1016/s0892-0362(96)90001-x. [DOI] [PubMed] [Google Scholar]
  30. Sher E. S., Xu X. M., Adams P. M., Craft C. M., Stein S. A. The effects of thyroid hormone level and action in developing brain: are these targets for the actions of polychlorinated biphenyls and dioxins? Toxicol Ind Health. 1998 Jan-Apr;14(1-2):121–158. doi: 10.1177/074823379801400110. [DOI] [PubMed] [Google Scholar]
  31. Skaare J. U., Bernhoft A., Derocher A., Gabrielsen G. W., Goksøyr A., Henriksen E., Larsen H. J., Lie E., Wiig Organochlorines in top predators at Svalbard--occurrence, levels and effects. Toxicol Lett. 2000 Mar 15;112-113:103–109. doi: 10.1016/s0378-4274(99)00256-8. [DOI] [PubMed] [Google Scholar]
  32. Skaare J. U., Bernhoft A., Wiig O., Norum K. R., Haug E., Eide D. M., Derocher A. E. Relationships between plasma levels of organochlorines, retinol and thyroid hormones from polar bears (Ursus maritimus) at Svalbard. J Toxicol Environ Health A. 2001 Feb 23;62(4):227–241. doi: 10.1080/009841001459397. [DOI] [PubMed] [Google Scholar]
  33. Stirling I., Spencer C., Andriashek D. Immobilization of polar bears (Ursus maritimus) with Telazol in the Canadian Arctic. J Wildl Dis. 1989 Apr;25(2):159–168. doi: 10.7589/0090-3558-25.2.159. [DOI] [PubMed] [Google Scholar]
  34. Sørmo Eugen G., Skaare Janneche U., Jüssi Ivar, Jüssi Mart, Jenssen Bjørn M. Polychlorinated biphenyls and organochlorine pesticides in Baltic and Atlantic gray seal (Halichoerus grypus) pups. Environ Toxicol Chem. 2003 Nov;22(11):2789–2799. doi: 10.1897/02-556. [DOI] [PubMed] [Google Scholar]
  35. Tomasi T. E., Hellgren E. C., Tucker T. J. Thyroid hormone concentrations in black bears (Ursus americanus): hibernation and pregnancy effects. Gen Comp Endocrinol. 1998 Feb;109(2):192–199. doi: 10.1006/gcen.1997.7018. [DOI] [PubMed] [Google Scholar]
  36. Tomasi T. E. Utilization rates of thyroid hormones in mammals. Comp Biochem Physiol A Comp Physiol. 1991;100(3):503–516. doi: 10.1016/0300-9629(91)90363-h. [DOI] [PubMed] [Google Scholar]
  37. Vos J. G., Dybing E., Greim H. A., Ladefoged O., Lambré C., Tarazona J. V., Brandt I., Vethaak A. D. Health effects of endocrine-disrupting chemicals on wildlife, with special reference to the European situation. Crit Rev Toxicol. 2000 Jan;30(1):71–133. doi: 10.1080/10408440091159176. [DOI] [PubMed] [Google Scholar]
  38. Zoeller Thomas R., Dowling Amy L. S., Herzig Carolyn T. A., Iannacone Eric A., Gauger Kelly J., Bansal Ruby. Thyroid hormone, brain development, and the environment. Environ Health Perspect. 2002 Jun;110 (Suppl 3):355–361. doi: 10.1289/ehp.02110s3355. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES