Abstract
While defining the no effect level for the 5 alpha-reductase inhibitor finasteride in the Hershberger assay, we encountered an inverted-U low-dose trophic effect on the prostate gland of the rat. Two attempts to confirm this observation were unsuccessful, and we concluded that the positive effect initially observed was associated with normal biologic variability. During the same period we attempted, unsuccessfully, to repeat our own observation of weak uterotrophic activity in the rat for the sunscreen 3-(4-methylbenzylidene)camphor (4MBC). Further evaluation led us to conclude that 4MBC is uterotrophic only when the control uterine weights are at the low end of their normally encountered range. This led us to reevaluate our earlier mouse uterotrophic assay data for bisphenol A (BPA). Originally we had concluded that BPA gave irreproducible evidence of weak uterotrophic activity, but upon ordering the eight experiments we had conducted, according to decreasing control uterine weight, we confirmed reproducible weak uterotrophic activity for BPA when the control uteri were at the low end of their normal range. In this article, we describe these observations, together with a reanalysis of the data associated with several reported instances of weak or low-dose endocrine effects that have proven difficult to confirm in independent laboratories. These include the activity of BPA on the CF1 mouse prostate; the activities of BPA, octylphenol, and nonylphenol on the rat testis; and the effect of polycarbonate caging on control mouse uterine weight. In all of these cases, variability among controls provides a major obstacle to data interpretation and confirmation. Our recommendations on experimental design are also presented, with a view to ending the current impasse on the reality, or otherwise, of low-dose or weak endocrine toxicities.
Full Text
The Full Text of this article is available as a PDF (147.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ashby J., Lefevre P. A., Tinwell H., Odum J., Owens W. Testosterone-stimulated weanlings as an alternative to castrated male rats in the Hershberger anti-androgen assay. Regul Toxicol Pharmacol. 2004 Apr;39(2):229–238. doi: 10.1016/j.yrtph.2004.02.001. [DOI] [PubMed] [Google Scholar]
- Ashby J. The efficient preparation of corn oil suspensions. Mutat Res. 1987 Jan;187(1):45–45. doi: 10.1016/0165-1218(87)90075-9. [DOI] [PubMed] [Google Scholar]
- Ashby J., Tinwell H., Haseman J. Lack of effects for low dose levels of bisphenol A and diethylstilbestrol on the prostate gland of CF1 mice exposed in utero. Regul Toxicol Pharmacol. 1999 Oct;30(2 Pt 1):156–166. doi: 10.1006/rtph.1999.1317. [DOI] [PubMed] [Google Scholar]
- Ashby J., Tinwell H., Lefevre P. A., Joiner R., Haseman J. The effect on sperm production in adult Sprague-Dawley rats exposed by gavage to bisphenol A between postnatal days 91-97. Toxicol Sci. 2003 May 28;74(1):129–138. doi: 10.1093/toxsci/kfg093. [DOI] [PubMed] [Google Scholar]
- Ashby J., Tinwell H., Lefevre P. A., Odum J., Paton D., Millward S. W., Tittensor S., Brooks A. N. Normal sexual development of rats exposed to butyl benzyl phthalate from conception to weaning. Regul Toxicol Pharmacol. 1997 Aug;26(1 Pt 1):102–118. doi: 10.1006/rtph.1997.1159. [DOI] [PubMed] [Google Scholar]
- Blohm T. R., Laughlin M. E., Benson H. D., Johnston J. O., Wright C. L., Schatzman G. L., Weintraub P. M. Pharmacological induction of 5 alpha-reductase deficiency in the rat: separation of testosterone-mediated and 5 alpha-dihydrotestosterone-mediated effects. Endocrinology. 1986 Sep;119(3):959–966. doi: 10.1210/endo-119-3-959. [DOI] [PubMed] [Google Scholar]
- Bolt H. M., Guhe C., Degen G. H. Comments on "In vitro and in vivo estrogenicity of UV screens". Environ Health Perspect. 2001 Aug;109(8):A358–A361. doi: 10.1289/ehp.109-a358. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cagen S. Z., Waechter J. M., Jr, Dimond S. S., Breslin W. J., Butala J. H., Jekat F. W., Joiner R. L., Shiotsuka R. N., Veenstra G. E., Harris L. R. Normal reproductive organ development in CF-1 mice following prenatal exposure to bisphenol A. Toxicol Sci. 1999 Jul;50(1):36–44. doi: 10.1093/toxsci/50.1.36. [DOI] [PubMed] [Google Scholar]
- Couse J. F., Dixon D., Yates M., Moore A. B., Ma L., Maas R., Korach K. S. Estrogen receptor-alpha knockout mice exhibit resistance to the developmental effects of neonatal diethylstilbestrol exposure on the female reproductive tract. Dev Biol. 2001 Oct 15;238(2):224–238. doi: 10.1006/dbio.2001.0413. [DOI] [PubMed] [Google Scholar]
- HERSHBERGER L. G., SHIPLEY E. G., MEYER R. K. Myotrophic activity of 19-nortestosterone and other steroids determined by modified levator ani muscle method. Proc Soc Exp Biol Med. 1953 May;83(1):175–180. doi: 10.3181/00379727-83-20301. [DOI] [PubMed] [Google Scholar]
- Howdeshell Kembra L., Peterman Paul H., Judy Barbara M., Taylor Julia A., Orazio Carl E., Ruhlen Rachel L., Vom Saal Frederick S., Welshons Wade V. Bisphenol A is released from used polycarbonate animal cages into water at room temperature. Environ Health Perspect. 2003 Jul;111(9):1180–1187. doi: 10.1289/ehp.5993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee P. C. Disruption of male reproductive tract development by administration of the xenoestrogen, nonylphenol, to male newborn rats. Endocrine. 1998 Aug;9(1):105–111. doi: 10.1385/ENDO:9:1:105. [DOI] [PubMed] [Google Scholar]
- Long X., Steinmetz R., Ben-Jonathan N., Caperell-Grant A., Young P. C., Nephew K. P., Bigsby R. M. Strain differences in vaginal responses to the xenoestrogen bisphenol A. Environ Health Perspect. 2000 Mar;108(3):243–247. doi: 10.1289/ehp.00108243. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nagel S. C., vom Saal F. S., Thayer K. A., Dhar M. G., Boechler M., Welshons W. V. Relative binding affinity-serum modified access (RBA-SMA) assay predicts the relative in vivo bioactivity of the xenoestrogens bisphenol A and octylphenol. Environ Health Perspect. 1997 Jan;105(1):70–76. doi: 10.1289/ehp.9710570. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nonneman D. J., Ganjam V. K., Welshons W. V., Vom Saal F. S. Intrauterine position effects on steroid metabolism and steroid receptors of reproductive organs in male mice. Biol Reprod. 1992 Nov;47(5):723–729. doi: 10.1095/biolreprod47.5.723. [DOI] [PubMed] [Google Scholar]
- Odum J., Ashby J. Neonatal exposure of male rats to nonylphenol has no effect on the reproductive tract. Toxicol Sci. 2000 Aug;56(2):400–404. doi: 10.1093/toxsci/56.2.400. [DOI] [PubMed] [Google Scholar]
- Odum J., Pyrah I. T., Foster J. R., Van Miller J. P., Joiner R. L., Ashby J. Comparative activities of p-nonylphenol and diethylstilbestrol in noble rat mammary gland and uterotrophic assays. Regul Toxicol Pharmacol. 1999 Apr;29(2 Pt 1):184–195. doi: 10.1006/rtph.1999.1286. [DOI] [PubMed] [Google Scholar]
- Odum J., Tinwell H., Jones K., Van Miller J. P., Joiner R. L., Tobin G., Kawasaki H., Deghenghi R., Ashby J. Effect of rodent diets on the sexual development of the rat. Toxicol Sci. 2001 May;61(1):115–127. doi: 10.1093/toxsci/61.1.115. [DOI] [PubMed] [Google Scholar]
- Ohsako S., Miyabara Y., Nishimura N., Kurosawa S., Sakaue M., Ishimura R., Sato M., Takeda K., Aoki Y., Sone H. Maternal exposure to a low dose of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) suppressed the development of reproductive organs of male rats: dose-dependent increase of mRNA levels of 5alpha-reductase type 2 in contrast to decrease of androgen receptor in the pubertal ventral prostate. Toxicol Sci. 2001 Mar;60(1):132–143. doi: 10.1093/toxsci/60.1.132. [DOI] [PubMed] [Google Scholar]
- Schlumpf M., Cotton B., Conscience M., Haller V., Steinmann B., Lichtensteiger W. In vitro and in vivo estrogenicity of UV screens. Environ Health Perspect. 2001 Mar;109(3):239–244. doi: 10.1289/ehp.01109239. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sharpe R. M., Fisher J. S., Millar M. M., Jobling S., Sumpter J. P. Gestational and lactational exposure of rats to xenoestrogens results in reduced testicular size and sperm production. Environ Health Perspect. 1995 Dec;103(12):1136–1143. doi: 10.1289/ehp.951031136. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sharpe R. M., Turner K. J., Sumpter J. P. Endocrine disruptors and testis development. Environ Health Perspect. 1998 May;106(5):A220–A221. doi: 10.1289/ehp.106-1533085. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tinwell H., Haseman J., Lefevre P. A., Wallis N., Ashby J. Normal sexual development of two strains of rat exposed in utero to low doses of bisphenol A. Toxicol Sci. 2002 Aug;68(2):339–348. doi: 10.1093/toxsci/68.2.339. [DOI] [PubMed] [Google Scholar]
- Tinwell H., Joiner R., Pate I., Soames A., Foster J., Ashby J. Uterotrophic activity of bisphenol A in the immature mouse. Regul Toxicol Pharmacol. 2000 Aug;32(1):118–126. doi: 10.1006/rtph.2000.1412. [DOI] [PubMed] [Google Scholar]
- Tinwell Helen, Lefevre Paul A., Moffat Graeme J., Burns A., Odum Jenny, Spurway T. D., Orphanides George, Ashby John. Confirmation of uterotrophic activity of 3-(4-methylbenzylidine)camphor in the immature rat. Environ Health Perspect. 2002 May;110(5):533–536. doi: 10.1289/ehp.02110533. [DOI] [PMC free article] [PubMed] [Google Scholar]