Abstract
Shellfish have the capacity to accumulate chemical contaminants found in their biotope and therefore present a potential risk for consumers. This study was conducted to assess the chemical risks associated with consumption of shellfish harvested on the north shore of the St. Lawrence River's lower estuary. A survey was carried out on 162 recreational harvesters, and shellfish were sampled for chemical contaminant analysis. We quantified 10 metals, 22 polycyclic aromatic hydrocarbons (PAHs), 14 polychlorinated biphenyls (PCBs), and 10 chlorinated pesticides. We subsequently evaluated cancer and noncancer risks for four consumption scenarios based on our survey results and published results. Soft-shell clams (Mya arenaria) were by far the most consumed shellfish species. Of the 56 selected contaminants, 36 were detected in the 23 homogenates of soft-shell clam meat. None of the contaminants found in the soft-shell clams were associated with intakes that exceed the main exposure limit recommendations proposed to prevent noncancer effects. However, several limits must be considered before drawing conclusions about the relative safety of shellfish consumption regarding this end point. Furthermore, inorganic arsenic and PCBs were present in sufficient concentrations to lead to cancer risks exceeding the level often considered acceptable for environmental exposure (1 x 10 (-4) to 1 x 10(-6)) in each of the four scenarios, even for the lowest observed scenario of 15 meals of soft-shell clams per year.
Full Text
The Full Text of this article is available as a PDF (139.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Binelli A., Provini A. POPs in edible clams from different Italian and European markets and possible human health risk. Mar Pollut Bull. 2003 Jul;46(7):879–886. doi: 10.1016/S0025-326X(03)00043-2. [DOI] [PubMed] [Google Scholar]
- Biswas S., Talukder G., Sharma A. Prevention of cytotoxic effects of arsenic by short-term dietary supplementation with selenium in mice in vivo. Mutat Res. 1999 Apr 26;441(1):155–160. doi: 10.1016/s1383-5718(99)00028-5. [DOI] [PubMed] [Google Scholar]
- Buchet J. P., Lison D., Ruggeri M., Foa V., Elia G. Assessment of exposure to inorganic arsenic, a human carcinogen, due to the consumption of seafood. Arch Toxicol. 1996;70(11):773–778. doi: 10.1007/s002040050339. [DOI] [PubMed] [Google Scholar]
- Chemically contaminated aquatic food resources and human cancer risk: retrospective. Environ Health Perspect. 1991 Jan;90:149–154. doi: 10.1289/ehp.90-1519501. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cooper C. B., Doyle M. E., Kipp K. Risks of consumption of contaminated seafood: the Quincy Bay case study. Environ Health Perspect. 1991 Jan;90:133–140. doi: 10.1289/ehp.90-1519503. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ferreccio C., González C., Milosavjlevic V., Marshall G., Sancha A. M., Smith A. H. Lung cancer and arsenic concentrations in drinking water in Chile. Epidemiology. 2000 Nov;11(6):673–679. doi: 10.1097/00001648-200011000-00010. [DOI] [PubMed] [Google Scholar]
- Francesconi Kevin A., Tanggaar René, McKenzie Christine J., Goessler Walter. Arsenic metabolites in human urine after ingestion of an arsenosugar. Clin Chem. 2002 Jan;48(1):92–101. [PubMed] [Google Scholar]
- Hattis Dale, Baird Sandra, Goble Robert. A straw man proposal for a quantitative definition of the RfD. Drug Chem Toxicol. 2002 Nov;25(4):403–436. doi: 10.1081/dct-120014793. [DOI] [PubMed] [Google Scholar]
- Li Weihua, Wei Chao, Zhang Chao, van Hulle Marijn, Cornelis Rita, Zhang Xinrong. A survey of arsenic species in Chinese seafood. Food Chem Toxicol. 2003 Aug;41(8):1103–1110. doi: 10.1016/s0278-6915(03)00063-2. [DOI] [PubMed] [Google Scholar]
- Mass M. J., Tennant A., Roop B. C., Cullen W. R., Styblo M., Thomas D. J., Kligerman A. D. Methylated trivalent arsenic species are genotoxic. Chem Res Toxicol. 2001 Apr;14(4):355–361. doi: 10.1021/tx000251l. [DOI] [PubMed] [Google Scholar]
- Muñoz O., Devesa V., Suñer M. A., Vélez D., Montoro R., Urieta I., Macho M. L., Jalón M. Total and inorganic arsenic in fresh and processed fish products. J Agric Food Chem. 2000 Sep;48(9):4369–4376. doi: 10.1021/jf000282m. [DOI] [PubMed] [Google Scholar]
- Nadon Sylvie, Kosatsky Tom, Przybysz Raymond. Contaminant exposure among women of childbearing age who eat St. Lawrence River sport fish. Arch Environ Health. 2002 Sep-Oct;57(5):473–481. doi: 10.1080/00039890209601440. [DOI] [PubMed] [Google Scholar]
- Patterson D. G., Holler J. S., Lapeza C. R., Jr, Alexander L. R., Groce D. F., O'Connor R. C., Smith S. J., Liddle J. A., Needham L. L. High-resolution gas chromatographic/high-resolution mass spectrometric analysis of human adipose tissue for 2,3,7,8-tetrachlorodibenzo-p-dioxin. Anal Chem. 1986 Apr;58(4):705–713. doi: 10.1021/ac00295a010. [DOI] [PubMed] [Google Scholar]
- Sabbioni E., Fischbach M., Pozzi G., Pietra R., Gallorini M., Piette J. L. Cellular retention, toxicity and carcinogenic potential of seafood arsenic. I. Lack of cytotoxicity and transforming activity of arsenobetaine in the BALB/3T3 cell line. Carcinogenesis. 1991 Jul;12(7):1287–1291. doi: 10.1093/carcin/12.7.1287. [DOI] [PubMed] [Google Scholar]
- Sather P. J., Ikonomou M. G., Addison R. F., He T., Ross P. S., Fowler B. Similarity of an Aroclor-based and a full congener-based method in determining total PCBs and a modeling approach to estimate Aroclor speciation from congener-specific PCB data. Environ Sci Technol. 2001 Dec 15;35(24):4874–4880. doi: 10.1021/es010921p. [DOI] [PubMed] [Google Scholar]
- Sather Paula J., Newman John W., Ikonomou Michael G. Congener-based Aroclor quantification and speciation techniques: a comparison of the strengths, weaknesses, and proper use of two alternative approaches. Environ Sci Technol. 2003 Dec 15;37(24):5678–5686. doi: 10.1021/es034432w. [DOI] [PubMed] [Google Scholar]
- Styblo M., Del Razo L. M., Vega L., Germolec D. R., LeCluyse E. L., Hamilton G. A., Reed W., Wang C., Cullen W. R., Thomas D. J. Comparative toxicity of trivalent and pentavalent inorganic and methylated arsenicals in rat and human cells. Arch Toxicol. 2000 Aug;74(6):289–299. doi: 10.1007/s002040000134. [DOI] [PubMed] [Google Scholar]
- Suñer M. A., Devesa V., Muñoz O., López F., Montoro R., Arias A. M., Blasco J. Total and inorganic arsenic in the fauna of the Guadalquivir estuary: environmental and human health implications. Sci Total Environ. 1999 Dec 6;242(1-3):261–270. doi: 10.1016/s0048-9697(99)00399-x. [DOI] [PubMed] [Google Scholar]
- Tsuda T., Babazono A., Yamamoto E., Kurumatani N., Mino Y., Ogawa T., Kishi Y., Aoyama H. Ingested arsenic and internal cancer: a historical cohort study followed for 33 years. Am J Epidemiol. 1995 Feb 1;141(3):198–209. doi: 10.1093/oxfordjournals.aje.a117421. [DOI] [PubMed] [Google Scholar]
