Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2004 Jun;112(8):920–925. doi: 10.1289/ehp.6779

The effect of disinfection by-products and mutagenic activity on birth weight and gestational duration.

J Michael Wright 1, Joel Schwartz 1, Douglas W Dockery 1
PMCID: PMC1242023  PMID: 15175183

Abstract

Epidemiologic studies of disinfection by-products have traditionally focused on total trihalomethane (TTHM) concentration as a surrogate for maternal exposure during pregnancy. We used birth certificate data on 196,000 infants to examine the effect of third-trimester exposures on various indices of fetal development. We examined the effect of town-average concentrations of TTHM and additional exposure metrics in relation to mean birth weight, mean gestational age, small for gestational age (SGA) infancy, and preterm delivery. Trihalomethane data (TTHM, chloroform, and bromodichloromethane) from 1995-1998 were available for 109 towns in Massachusetts. Data from 1997-1998 on haloacetic acid (total haloacetic acids, dichloroacetic acid, and trichloroacetic acid), 3-chloro-4-(dichloromethyl)-5- hydroxy-2(5H)-furanone (MX), and mutagenicity were available for a limited number of towns. We observed reductions in mean birth weight (12-18 g) for maternal trihalomethane exposures > the 90th percentile compared with those < the 50th percentile. Birth weight reductions were detected for chloroform exposures > 20 microg/L and TTHM exposures > 40 microg/L. Elevated trihalomethanes were associated with increases in gestational duration and a reduced risk of preterm delivery. We found evidence of an exposure-response effect of trihalomethanes on risk of SGA, with odds ratios (ORs) ranging from 1.09 to 1.23 for bromodichloromethane exposures > 5 microg/L. Elevated mutagenic activity was associated with SGA [OR = 1.25; 95% confidence interval (CI), 1.04 to 1.51] and mean birth weight (-27 g; 95% CI, -54 to -1). Although smaller in magnitude, our findings are consistent with previous studies reporting associations between trihalomethanes and SGA. These data also suggest a relationship between fetal development indices and mutagenic activity independent of exposure to trihalomethanes, haloacetic acids, and MX.

Full Text

The Full Text of this article is available as a PDF (133.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexander G. R., Kotelchuck M. Quantifying the adequacy of prenatal care: a comparison of indices. Public Health Rep. 1996 Sep-Oct;111(5):408–419. [PMC free article] [PubMed] [Google Scholar]
  2. Bobak M. Outdoor air pollution, low birth weight, and prematurity. Environ Health Perspect. 2000 Feb;108(2):173–176. doi: 10.1289/ehp.00108173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bove F. J., Fulcomer M. C., Klotz J. B., Esmart J., Dufficy E. M., Savrin J. E. Public drinking water contamination and birth outcomes. Am J Epidemiol. 1995 May 1;141(9):850–862. doi: 10.1093/oxfordjournals.aje.a117521. [DOI] [PubMed] [Google Scholar]
  4. Branum Amy M., Schoendorf Kenneth C. Changing patterns of low birthweight and preterm birth in the United States, 1981-98. Paediatr Perinat Epidemiol. 2002 Jan;16(1):8–15. doi: 10.1046/j.1365-3016.2002.00394.x. [DOI] [PubMed] [Google Scholar]
  5. Daniel F. B., Meier J. R., Deangelo A. B. Advances in research on carcinogenic and genotoxic by-products of chlorine disinfection: chlorinated hydroxyfuranones and chlorinated acetic acids. Ann Ist Super Sanita. 1993;29(2):279–291. [PubMed] [Google Scholar]
  6. Daniel F. B., Olson G. R., Stober J. A. Induction of gastrointestinal tract nuclear anomalies in B6C3F1 mice by 3-chloro-4-(dichloromethyl)-5-hydroxy-2[5H]-furanone and 3,4-(dichloro)-5-hydroxy-2[5H]-furanone, mutagenic byproducts of chlorine disinfection. Environ Mol Mutagen. 1991;17(1):32–39. doi: 10.1002/em.2850170106. [DOI] [PubMed] [Google Scholar]
  7. David R. J. The quality and completeness of birthweight and gestational age data in computerized birth files. Am J Public Health. 1980 Sep;70(9):964–973. doi: 10.2105/ajph.70.9.964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dodds L., King W., Woolcott C., Pole J. Trihalomethanes in public water supplies and adverse birth outcomes. Epidemiology. 1999 May;10(3):233–237. [PubMed] [Google Scholar]
  9. Epstein D. L., Nolen G. A., Randall J. L., Christ S. A., Read E. J., Stober J. A., Smith M. K. Cardiopathic effects of dichloroacetate in the fetal Long-Evans rat. Teratology. 1992 Sep;46(3):225–235. doi: 10.1002/tera.1420460306. [DOI] [PubMed] [Google Scholar]
  10. Gallagher M. D., Nuckols J. R., Stallones L., Savitz D. A. Exposure to trihalomethanes and adverse pregnancy outcomes. Epidemiology. 1998 Sep;9(5):484–489. [PubMed] [Google Scholar]
  11. Gjessing H. K., Skjaerven R., Wilcox A. J. Errors in gestational age: evidence of bleeding early in pregnancy. Am J Public Health. 1999 Feb;89(2):213–218. doi: 10.2105/ajph.89.2.213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Graves C. G., Matanoski G. M., Tardiff R. G. Weight of evidence for an association between adverse reproductive and developmental effects and exposure to disinfection by-products: a critical review. Regul Toxicol Pharmacol. 2001 Oct;34(2):103–124. doi: 10.1006/rtph.2001.1494. [DOI] [PubMed] [Google Scholar]
  13. Keegan T., Whitaker H., Nieuwenhuijsen M. J., Toledano M. B., Elliott P., Fawell J., Wilkinson M., Best N. Use of routinely collected data on trihalomethane in drinking water for epidemiological purposes. Occup Environ Med. 2001 Jul;58(7):447–452. doi: 10.1136/oem.58.7.447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Khoury M. J., Stewart W., Weinstein A., Panny S., Lindsay P., Eisenberg M. Residential mobility during pregnancy: implications for environmental teratogenesis. J Clin Epidemiol. 1988;41(1):15–20. doi: 10.1016/0895-4356(88)90004-2. [DOI] [PubMed] [Google Scholar]
  15. King W. D., Dodds L., Allen A. C. Relation between stillbirth and specific chlorination by-products in public water supplies. Environ Health Perspect. 2000 Sep;108(9):883–886. doi: 10.1289/ehp.00108883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Klotz J. B., Pyrch L. A. Neural tube defects and drinking water disinfection by-products. Epidemiology. 1999 Jul;10(4):383–390. doi: 10.1097/00001648-199907000-00005. [DOI] [PubMed] [Google Scholar]
  17. Kramer M. D., Lynch C. F., Isacson P., Hanson J. W. The association of waterborne chloroform with intrauterine growth retardation. Epidemiology. 1992 Sep;3(5):407–413. doi: 10.1097/00001648-199209000-00005. [DOI] [PubMed] [Google Scholar]
  18. Maisonet M., Bush T. J., Correa A., Jaakkola J. J. Relation between ambient air pollution and low birth weight in the Northeastern United States. Environ Health Perspect. 2001 Jun;109 (Suppl 3):351–356. doi: 10.1289/ehp.01109s3351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Maron D. M., Ames B. N. Revised methods for the Salmonella mutagenicity test. Mutat Res. 1983 May;113(3-4):173–215. doi: 10.1016/0165-1161(83)90010-9. [DOI] [PubMed] [Google Scholar]
  20. McCormick M. C. The contribution of low birth weight to infant mortality and childhood morbidity. N Engl J Med. 1985 Jan 10;312(2):82–90. doi: 10.1056/NEJM198501103120204. [DOI] [PubMed] [Google Scholar]
  21. Murray F. J., Schwetz B. A., McBride J. G., Staples R. E. Toxicity of inhaled chloroform in pregnant mice and their offspring. Toxicol Appl Pharmacol. 1979 Sep 30;50(3):515–522. doi: 10.1016/0041-008x(79)90406-x. [DOI] [PubMed] [Google Scholar]
  22. Nieuwenhuijsen M. J., Toledano M. B., Eaton N. E., Fawell J., Elliott P. Chlorination disinfection byproducts in water and their association with adverse reproductive outcomes: a review. Occup Environ Med. 2000 Feb;57(2):73–85. doi: 10.1136/oem.57.2.73. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Reif J. S., Hatch M. C., Bracken M., Holmes L. B., Schwetz B. A., Singer P. C. Reproductive and developmental effects of disinfection by-products in drinking water. Environ Health Perspect. 1996 Oct;104(10):1056–1061. doi: 10.1289/ehp.961041056. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Ritz B., Yu F. The effect of ambient carbon monoxide on low birth weight among children born in southern California between 1989 and 1993. Environ Health Perspect. 1999 Jan;107(1):17–25. doi: 10.1289/ehp.9910717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Rogers J. F., Thompson S. J., Addy C. L., McKeown R. E., Cowen D. J., Decouflé P. Association of very low birth weight with exposures to environmental sulfur dioxide and total suspended particulates. Am J Epidemiol. 2000 Mar 15;151(6):602–613. doi: 10.1093/oxfordjournals.aje.a010248. [DOI] [PubMed] [Google Scholar]
  26. Rosenthal S. L. A review of the mutagenicity of chloroform. Environ Mol Mutagen. 1987;10(2):211–226. doi: 10.1002/em.2850100212. [DOI] [PubMed] [Google Scholar]
  27. Ruddick J. A., Villeneuve D. C., Chu I., Valli V. E. A teratological assessment of four trihalomethanes in the rat. J Environ Sci Health B. 1983;18(3):333–349. doi: 10.1080/03601238309372373. [DOI] [PubMed] [Google Scholar]
  28. Savitz D. A., Andrews K. W., Pastore L. M. Drinking water and pregnancy outcome in central North Carolina: source, amount, and trihalomethane levels. Environ Health Perspect. 1995 Jun;103(6):592–596. doi: 10.1289/ehp.95103592. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Schulman J., Selvin S., Shaw G. M., Malcoe L. H. Exposure misclassification due to residential mobility during pregnancy in epidemiologic investigations of congenital malformations. Arch Environ Health. 1993 Mar-Apr;48(2):114–119. doi: 10.1080/00039896.1993.9938404. [DOI] [PubMed] [Google Scholar]
  30. Schwetz B. A., Leong B. K., Gehring P. J. Embryo- and fetotoxicity of inhaled chloroform in rats. Toxicol Appl Pharmacol. 1974 Jun;28(3):442–451. doi: 10.1016/0041-008x(74)90229-4. [DOI] [PubMed] [Google Scholar]
  31. Shaw G. M., Malcoe L. H. Residential mobility during pregnancy for mothers of infants with or without congenital cardiac anomalies: a reprint. Arch Environ Health. 1992 May-Jun;47(3):236–238. doi: 10.1080/00039896.1992.9938355. [DOI] [PubMed] [Google Scholar]
  32. Smith M. K., George E. L., Zenick H., Manson J. M., Stober J. A. Developmental toxicity of halogenated acetonitriles: drinking water by-products of chlorine disinfection. Toxicology. 1987 Oct 12;46(1):83–93. doi: 10.1016/0300-483x(87)90140-5. [DOI] [PubMed] [Google Scholar]
  33. Smith M. K., Randall J. L., Read E. J., Stober J. A. Developmental toxicity of dichloroacetate in the rat. Teratology. 1992 Sep;46(3):217–223. doi: 10.1002/tera.1420460305. [DOI] [PubMed] [Google Scholar]
  34. Smith M. K., Randall J. L., Read E. J., Stober J. A. Teratogenic activity of trichloroacetic acid in the rat. Teratology. 1989 Nov;40(5):445–451. doi: 10.1002/tera.1420400506. [DOI] [PubMed] [Google Scholar]
  35. Smith M. K., Randall J. L., Stober J. A., Read E. J. Developmental toxicity of dichloroacetonitrile: a by-product of drinking water disinfection. Fundam Appl Toxicol. 1989 May;12(4):765–772. doi: 10.1016/0272-0590(89)90008-0. [DOI] [PubMed] [Google Scholar]
  36. Smith M. K., Randall J. L., Tocco D. R., York R. G., Stober J. A., Read E. J. Teratogenic effects of trichloroacetonitrile in the Long-Evans rat. Teratology. 1988 Aug;38(2):113–120. doi: 10.1002/tera.1420380203. [DOI] [PubMed] [Google Scholar]
  37. Teramoto S., Takahashi K., Kikuta M., Kobayashi H. Potential teratogenicity of 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX) in micromass in vitro test. J Toxicol Environ Health A. 1998 Apr 24;53(8):607–614. doi: 10.1080/009841098159060. [DOI] [PubMed] [Google Scholar]
  38. Thompson D. J., Warner S. D., Robinson V. B. Teratology studies on orally administered chloroform in the rat and rabbit. Toxicol Appl Pharmacol. 1974 Sep;29(3):348–357. doi: 10.1016/0041-008x(74)90107-0. [DOI] [PubMed] [Google Scholar]
  39. Waller K., Swan S. H., DeLorenze G., Hopkins B. Trihalomethanes in drinking water and spontaneous abortion. Epidemiology. 1998 Mar;9(2):134–140. [PubMed] [Google Scholar]
  40. Wang X., Ding H., Ryan L., Xu X. Association between air pollution and low birth weight: a community-based study. Environ Health Perspect. 1997 May;105(5):514–520. doi: 10.1289/ehp.97105514. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Weisel C. P., Jo W. K. Ingestion, inhalation, and dermal exposures to chloroform and trichloroethene from tap water. Environ Health Perspect. 1996 Jan;104(1):48–51. doi: 10.1289/ehp.9610448. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Whitaker Heather, Nieuwenhuijsen Mark J., Best Nicola, Fawell John, Gowers Alison, Elliot Paul. Description of trihalomethane levels in three UK water suppliers. J Expo Anal Environ Epidemiol. 2003 Jan;13(1):17–23. doi: 10.1038/sj.jea.7500252. [DOI] [PubMed] [Google Scholar]
  43. Wilcox A., Skjaerven R., Buekens P., Kiely J. Birth weight and perinatal mortality. A comparison of the United States and Norway. JAMA. 1995 Mar 1;273(9):709–711. [PubMed] [Google Scholar]
  44. Wollmann H. A. Intrauterine growth restriction: definition and etiology. Horm Res. 1998;49 (Suppl 2):1–6. doi: 10.1159/000053079. [DOI] [PubMed] [Google Scholar]
  45. Wright J. M., Schwartz J., Dockery D. W. Effect of trihalomethane exposure on fetal development. Occup Environ Med. 2003 Mar;60(3):173–180. doi: 10.1136/oem.60.3.173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Wright J. Michael, Schwartz Joel, Vartiainen Terttu, Mäki-Paakkanen Jorma, Altshul Larisa, Harrington Joseph J., Dockery Douglas W. 3-Chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX) and mutagenic activity in Massachusetts drinking water. Environ Health Perspect. 2002 Feb;110(2):157–164. doi: 10.1289/ehp.02110157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Xu Xu, Mariano Thomas M., Laskin Jeffrey D., Weisel Clifford P. Percutaneous absorption of trihalomethanes, haloacetic acids, and haloketones. Toxicol Appl Pharmacol. 2002 Oct 1;184(1):19–26. [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES