Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2004 Jun;112(8):926–931. doi: 10.1289/ehp.6615

Levels of lead in breast milk and their relation to maternal blood and bone lead levels at one month postpartum.

Adrienne S Ettinger 1, Martha María Téllez-Rojo 1, Chitra Amarasiriwardena 1, Teresa González-Cossío 1, Karen E Peterson 1, Antonio Aro 1, Howard Hu 1, Mauricio Hernández-Avila 1
PMCID: PMC1242024  PMID: 15175184

Abstract

Despite the many well-recognized benefits of breast-feeding for both mothers and infants, detectable levels of lead in breast milk have been documented in population studies of women with no current environmental or occupational exposures. Mobilization of maternal bone lead stores has been suggested as a potential endogenous source of lead in breast milk. We measured lead in breast milk to quantify the relation between maternal blood and bone lead levels and breast-feeding status (exclusive vs. partial) among 310 lactating women in Mexico City, Mexico, at 1 month postpartum. Umbilical cord and maternal blood samples were collected at delivery. Maternal breast milk, blood, and bone lead levels were obtained at 1 month postpartum. Levels of lead in breast milk ranged from 0.21 to 8.02 microg/L (ppb), with a geometric mean (GM) of 1.1 microg/L; blood lead ranged from 1.8 to 29.9 microg/dL (GM = 8.4 microg/dL); bone lead ranged from < 1 to 67.2 microg/g bone mineral (patella) and from < 1 to 76.6 microg/g bone mineral (tibia) at 1 month postpartum. Breast milk lead was significantly correlated with umbilical cord lead [Spearman correlation coefficient (rS) = 0.36, p < 0.0001] and maternal blood lead (rS= 0.38, p < 0.0001) at delivery and with maternal blood lead (rS = 0.42, p < 0.0001) and patella lead (rS= 0.15, p < 0.01) at 1 month postpartum. Mother's age, years living in Mexico City, and use of lead-glazed ceramics, all predictive of cumulative lead exposure, were not significant predictors of breast milk lead levels. Adjusting for parity, daily dietary calcium intake (milligrams), infant weight change (grams), and breast-feeding status (exclusive or partial lactation), the estimated effect of an interquartile range (IQR) increase in blood lead (5.0 microg/dL) was associated with a 33% increase in breast milk lead [95% confidence interval (CI), 24 to 43%], whereas an IQR increase in patella lead (20 microg/g) was associated with a 14% increase in breast milk lead (95% CI, 5 to 25%). An IQR increase in tibia lead (12.0 microg/g) was associated with a 5% increase in breast milk lead (95% CI, -3% to 14%). Our results indicate that even among a population of women with relatively high lifetime exposure to lead, levels of lead in breast milk are low, influenced both by current lead exposure and by redistribution of bone lead accumulated from past environmental exposures.

Full Text

The Full Text of this article is available as a PDF (293.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abadin H. G., Hibbs B. F., Pohl H. R. Breast-feeding exposure of infants to cadmium, lead, and mercury: a public health viewpoint. Toxicol Ind Health. 1997 Jul-Aug;13(4):495–517. doi: 10.1177/074823379701300403. [DOI] [PubMed] [Google Scholar]
  2. Barry P. S. A comparison of concentrations of lead in human tissues. Br J Ind Med. 1975 May;32(2):119–139. doi: 10.1136/oem.32.2.119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barry P. S., Mossman D. B. Lead concentrations in human tissues. Br J Ind Med. 1970 Oct;27(4):339–351. doi: 10.1136/oem.27.4.339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bonithon-Kopp C., Huel G., Grasmick C., Sarmini H., Moreau T. Effects of pregnancy on the inter-individual variations in blood levels of lead, cadmium and mercury. Biol Res Pregnancy Perinatol. 1986;7(1):37–42. [PubMed] [Google Scholar]
  5. Gulson B. L., Jameson C. W., Mahaffey K. R., Mizon K. J., Korsch M. J., Vimpani G. Pregnancy increases mobilization of lead from maternal skeleton. J Lab Clin Med. 1997 Jul;130(1):51–62. doi: 10.1016/s0022-2143(97)90058-5. [DOI] [PubMed] [Google Scholar]
  6. Gulson B. L., Jameson C. W., Mahaffey K. R., Mizon K. J., Patison N., Law A. J., Korsch M. J., Salter M. A. Relationships of lead in breast milk to lead in blood, urine, and diet of the infant and mother. Environ Health Perspect. 1998 Oct;106(10):667–674. doi: 10.1289/ehp.98106667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gulson B. L., Mahaffey K. R., Jameson C. W., Mizon K. J., Korsch M. J., Cameron M. A., Eisman J. A. Mobilization of lead from the skeleton during the postnatal period is larger than during pregnancy. J Lab Clin Med. 1998 Apr;131(4):324–329. doi: 10.1016/s0022-2143(98)90182-2. [DOI] [PubMed] [Google Scholar]
  8. Hayslip C. C., Klein T. A., Wray H. L., Duncan W. E. The effects of lactation on bone mineral content in healthy postpartum women. Obstet Gynecol. 1989 Apr;73(4):588–592. [PubMed] [Google Scholar]
  9. Hernandez-Avila M., Gonzalez-Cossio T., Palazuelos E., Romieu I., Aro A., Fishbein E., Peterson K. E., Hu H. Dietary and environmental determinants of blood and bone lead levels in lactating postpartum women living in Mexico City. Environ Health Perspect. 1996 Oct;104(10):1076–1082. doi: 10.1289/ehp.961041076. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hernandez-Avila Mauricio, Gonzalez-Cossio Teresa, Hernandez-Avila Juan E., Romieu Isabelle, Peterson Karen E., Aro Antonio, Palazuelos Eduardo, Hu Howard. Dietary calcium supplements to lower blood lead levels in lactating women: a randomized placebo-controlled trial. Epidemiology. 2003 Mar;14(2):206–212. doi: 10.1097/01.EDE.0000038520.66094.34. [DOI] [PubMed] [Google Scholar]
  11. Hernández-Avila M., Romieu I., Parra S., Hernández-Avila J., Madrigal H., Willett W. Validity and reproducibility of a food frequency questionnaire to assess dietary intake of women living in Mexico City. Salud Publica Mex. 1998 Mar-Apr;40(2):133–140. doi: 10.1590/s0036-36341998000200005. [DOI] [PubMed] [Google Scholar]
  12. Hertz-Picciotto I., Schramm M., Watt-Morse M., Chantala K., Anderson J., Osterloh J. Patterns and determinants of blood lead during pregnancy. Am J Epidemiol. 2000 Nov 1;152(9):829–837. doi: 10.1093/aje/152.9.829. [DOI] [PubMed] [Google Scholar]
  13. Hu H., Hashimoto D., Besser M. Levels of lead in blood and bone of women giving birth in a Boston hospital. Arch Environ Health. 1996 Jan-Feb;51(1):52–58. doi: 10.1080/00039896.1996.9935994. [DOI] [PubMed] [Google Scholar]
  14. Hu H., Milder F. L., Burger D. E. The use of K X-ray fluorescence for measuring lead burden in epidemiological studies: high and low lead burdens and measurement uncertainty. Environ Health Perspect. 1991 Aug;94:107–110. doi: 10.1289/ehp.94-1567946. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Knowles J. A. Breast milk: a source of more than nutrition for the neonate. Clin Toxicol. 1974;7(1):69–82. doi: 10.3109/15563657408987978. [DOI] [PubMed] [Google Scholar]
  16. Kosnett M. J., Becker C. E., Osterloh J. D., Kelly T. J., Pasta D. J. Factors influencing bone lead concentration in a suburban community assessed by noninvasive K x-ray fluorescence. JAMA. 1994 Jan 19;271(3):197–203. [PubMed] [Google Scholar]
  17. LaKind J. S., Berlin C. M., Naiman D. Q. Infant exposure to chemicals in breast milk in the United States: what we need to learn from a breast milk monitoring program. Environ Health Perspect. 2001 Jan;109(1):75–88. doi: 10.1289/ehp.0110975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Miller D. T., Paschal D. C., Gunter E. W., Stroud P. E., D'Angelo J. Determination of lead in blood using electrothermal atomisation atomic absorption spectrometry with a L'vov platform and matrix modifier. Analyst. 1987 Dec;112(12):1701–1704. doi: 10.1039/an9871201701. [DOI] [PubMed] [Google Scholar]
  19. Moline J., Lopez Carrillo L., Torres Sanchez L., Godbold J., Todd A. Lactation and lead body burden turnover: a pilot study in Mexico. J Occup Environ Med. 2000 Nov;42(11):1070–1075. doi: 10.1097/00043764-200011000-00007. [DOI] [PubMed] [Google Scholar]
  20. Namihira D., Saldivar L., Pustilnik N., Carreón G. J., Salinas M. E. Lead in human blood and milk from nursing women living near a smelter in Mexico City. J Toxicol Environ Health. 1993 Mar;38(3):225–232. doi: 10.1080/15287399309531714. [DOI] [PubMed] [Google Scholar]
  21. Newman J. Caution regarding nipple shields. J Hum Lact. 1997 Mar;13(1):12–13. doi: 10.1177/089033449701300107. [DOI] [PubMed] [Google Scholar]
  22. Ong C. N., Phoon W. O., Law H. Y., Tye C. Y., Lim H. H. Concentrations of lead in maternal blood, cord blood, and breast milk. Arch Dis Child. 1985 Aug;60(8):756–759. doi: 10.1136/adc.60.8.756. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Osterloh J. D., Kelly T. J. Study of the effect of lactational bone loss on blood lead concentrations in humans. Environ Health Perspect. 1999 Mar;107(3):187–194. doi: 10.1289/ehp.99107187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Rothenberg S. J., Khan F., Manalo M., Jiang J., Cuellar R., Reyes S., Acosta S., Jauregui M., Diaz M., Sanchez M. Maternal bone lead contribution to blood lead during and after pregnancy. Environ Res. 2000 Jan;82(1):81–90. doi: 10.1006/enrs.1999.4007. [DOI] [PubMed] [Google Scholar]
  25. Silbergeld E. K. Lead in bone: implications for toxicology during pregnancy and lactation. Environ Health Perspect. 1991 Feb;91:63–70. doi: 10.1289/ehp.919163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Sim M. R., McNeil J. J. Monitoring chemical exposure using breast milk: a methodological review. Am J Epidemiol. 1992 Jul 1;136(1):1–11. doi: 10.1093/oxfordjournals.aje.a116412. [DOI] [PubMed] [Google Scholar]
  27. Sinks T., Jackson R. J. International study finds breast milk free of significant lead contamination. Environ Health Perspect. 1999 Feb;107(2):A58–A61. doi: 10.1289/ehp.107-1566331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Smith D. R., Ilustre R. P., Osterloh J. D. Methodological considerations for the accurate determination of lead in human plasma and serum. Am J Ind Med. 1998 May;33(5):430–438. doi: 10.1002/(sici)1097-0274(199805)33:5<430::aid-ajim2>3.0.co;2-w. [DOI] [PubMed] [Google Scholar]
  29. Sowers M. Pregnancy and lactation as risk factors for subsequent bone loss and osteoporosis. J Bone Miner Res. 1996 Aug;11(8):1052–1060. doi: 10.1002/jbmr.5650110803. [DOI] [PubMed] [Google Scholar]
  30. Sowers MaryFran R., Scholl Theresa O., Hall Gene, Jannausch Mary L., Kemp Francis W., Li Xinhua, Bogden John D. Lead in breast milk and maternal bone turnover. Am J Obstet Gynecol. 2002 Sep;187(3):770–776. doi: 10.1067/mob.2002.125736. [DOI] [PubMed] [Google Scholar]
  31. Téllez-Rojo Martha María, Hernández-Avila Mauricio, González-Cossío Teresa, Romieu Isabelle, Aro Antonio, Palazuelos Eduardo, Schwartz Joel, Hu Howard. Impact of breastfeeding on the mobilization of lead from bone. Am J Epidemiol. 2002 Mar 1;155(5):420–428. doi: 10.1093/aje/155.5.420. [DOI] [PubMed] [Google Scholar]
  32. Wolff M. S. Occupationally derived chemicals in breast milk. Am J Ind Med. 1983;4(1-2):259–281. [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES