Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2001 Jan;109(1):27–33. doi: 10.1289/ehp.0110927

Xenobiotic acceleration of idiopathic systemic autoimmunity in lupus-prone bxsb mice.

K M Pollard 1, D L Pearson 1, P Hultman 1, T N Deane 1, U Lindh 1, D H Kono 1
PMCID: PMC1242047  PMID: 11171521

Abstract

The diverse genetic backgrounds of lupus-prone murine models, which produce both quantitative and qualitative differences in disease expression, may be a valuable resource for studying the influence of environmental exposure on autoimmune disease in sensitive populations. We tested this premise by exposing autoimmune-prone BXSB and the nonautoimmune C57BL/6 mice to the heavy metal mercury. Although both strains express a nonsusceptible H-2 haplotype, exposure to mercury accelerated systemic autoimmunity in both male and female BXSB mice, whereas the C57BL/6 mice were resistant. The subclasses of antichromatin antibodies elicited in BXSB mice by mercury exposure were more consistent with the predominant Th1-type response of idiopathic disease than with the Th2-type response found in mercury-induced autoimmunity (HgIA). The appearance and magnitude of both humoral and cellular features of systemic autoimmunity correlated with the mercury dose. Furthermore, environmentally relevant tissue levels of mercury were associated with exacerbated systemic autoimmunity. These studies demonstrate that xenobiotic exposure can accelerate spontaneous systemic autoimmunity, and they support the possibility that low-level xenobiotic exposure enhances susceptibility to systemic autoimmunity in genetically susceptible individuals.

Full Text

The Full Text of this article is available as a PDF (132.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ansel J. C., Mountz J., Steinberg A. D., DeFabo E., Green I. Effects of UV radiation on autoimmune strains of mice: increased mortality and accelerated autoimmunity in BXSB male mice. J Invest Dermatol. 1985 Sep;85(3):181–186. doi: 10.1111/1523-1747.ep12276652. [DOI] [PubMed] [Google Scholar]
  2. Barregård L., Svalander C., Schütz A., Westberg G., Sällsten G., Blohmé I., Mölne J., Attman P. O., Haglind P. Cadmium, mercury, and lead in kidney cortex of the general Swedish population: a study of biopsies from living kidney donors. Environ Health Perspect. 1999 Nov;107(11):867–871. doi: 10.1289/ehp.107-1566723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bell S. A., Hobbs M. V., Rubin R. L. Isotype-restricted hyperimmunity in a murine model of the toxic oil syndrome. J Immunol. 1992 Jun 1;148(11):3369–3376. [PubMed] [Google Scholar]
  4. Burlingame R. W., Boey M. L., Starkebaum G., Rubin R. L. The central role of chromatin in autoimmune responses to histones and DNA in systemic lupus erythematosus. J Clin Invest. 1994 Jul;94(1):184–192. doi: 10.1172/JCI117305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Burlingame R. W., Rubin R. L., Balderas R. S., Theofilopoulos A. N. Genesis and evolution of antichromatin autoantibodies in murine lupus implicates T-dependent immunization with self antigen. J Clin Invest. 1993 Apr;91(4):1687–1696. doi: 10.1172/JCI116378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Burlingame R. W., Rubin R. L. Subnucleosome structures as substrates in enzyme-linked immunosorbent assays. J Immunol Methods. 1990 Dec 5;134(2):187–199. doi: 10.1016/0022-1759(90)90380-e. [DOI] [PubMed] [Google Scholar]
  7. Carpenter D. F., Steinberg A. D., Schur P. H., Talal N. The pathogenesis of autoimmunity in New Zealand mice. II. Acceleration of glomerulonephritis by polyinosinic-polycytidylic acid. Lab Invest. 1970 Dec;23(6):628–634. [PubMed] [Google Scholar]
  8. Chu E. B., Ernst D. N., Hobbs M. V., Weigle W. O. Maturational changes in CD4+ cell subsets and lymphokine production in BXSB mice. J Immunol. 1994 Apr 15;152(8):4129–4138. [PubMed] [Google Scholar]
  9. Deapen D., Escalante A., Weinrib L., Horwitz D., Bachman B., Roy-Burman P., Walker A., Mack T. M. A revised estimate of twin concordance in systemic lupus erythematosus. Arthritis Rheum. 1992 Mar;35(3):311–318. doi: 10.1002/art.1780350310. [DOI] [PubMed] [Google Scholar]
  10. Eneström S., Hultman P. Does amalgam affect the immune system? A controversial issue. Int Arch Allergy Immunol. 1995 Mar;106(3):180–203. doi: 10.1159/000236843. [DOI] [PubMed] [Google Scholar]
  11. Gleichmann E., Kimber I., Purchase I. F. Immunotoxicology: suppressive and stimulatory effects of drugs and environmental chemicals on the immune system. A discussion. Arch Toxicol. 1989;63(4):257–273. doi: 10.1007/BF00278639. [DOI] [PubMed] [Google Scholar]
  12. Hang L., Slack J. H., Amundson C., Izui S., Theofilopoulos A. N., Dixon F. J. Induction of murine autoimmune disease by chronic polyclonal B cell activation. J Exp Med. 1983 Mar 1;157(3):874–883. doi: 10.1084/jem.157.3.874. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hultman P., Bell L. J., Eneström S., Pollard K. M. Murine susceptibility to mercury. I. Autoantibody profiles and systemic immune deposits in inbred, congenic, and intra-H-2 recombinant strains. Clin Immunol Immunopathol. 1992 Nov;65(2):98–109. doi: 10.1016/0090-1229(92)90212-7. [DOI] [PubMed] [Google Scholar]
  14. Hultman P., Bell L. J., Eneström S., Pollard K. M. Murine susceptibility to mercury. II. autoantibody profiles and renal immune deposits in hybrid, backcross, and H-2d congenic mice. Clin Immunol Immunopathol. 1993 Jul;68(1):9–20. doi: 10.1006/clin.1993.1088. [DOI] [PubMed] [Google Scholar]
  15. Hultman P., Eneström S. The induction of immune complex deposits in mice by peroral and parenteral administration of mercuric chloride: strain dependent susceptibility. Clin Exp Immunol. 1987 Feb;67(2):283–292. [PMC free article] [PubMed] [Google Scholar]
  16. Hultman P., Johansson U., Turley S. J., Lindh U., Eneström S., Pollard K. M. Adverse immunological effects and autoimmunity induced by dental amalgam and alloy in mice. FASEB J. 1994 Nov;8(14):1183–1190. doi: 10.1096/fasebj.8.14.7958626. [DOI] [PubMed] [Google Scholar]
  17. Hultman P., Lindh U., Hörsted-Bindslev P. Activation of the immune system and systemic immune-complex deposits in Brown Norway rats with dental amalgam restorations. J Dent Res. 1998 Jun;77(6):1415–1425. doi: 10.1177/00220345980770060601. [DOI] [PubMed] [Google Scholar]
  18. Hultman P., Turley S. J., Eneström S., Lindh U., Pollard K. M. Murine genotype influences the specificity, magnitude and persistence of murine mercury-induced autoimmunity. J Autoimmun. 1996 Apr;9(2):139–149. doi: 10.1006/jaut.1996.0017. [DOI] [PubMed] [Google Scholar]
  19. Kelley V. R., Wüthrich R. P. Cytokines in the pathogenesis of systemic lupus erythematosus. Semin Nephrol. 1999 Jan;19(1):57–66. [PubMed] [Google Scholar]
  20. Kono D. H., Balomenos D., Pearson D. L., Park M. S., Hildebrandt B., Hultman P., Pollard K. M. The prototypic Th2 autoimmunity induced by mercury is dependent on IFN-gamma and not Th1/Th2 imbalance. J Immunol. 1998 Jul 1;161(1):234–240. [PubMed] [Google Scholar]
  21. Kono D. H., Burlingame R. W., Owens D. G., Kuramochi A., Balderas R. S., Balomenos D., Theofilopoulos A. N. Lupus susceptibility loci in New Zealand mice. Proc Natl Acad Sci U S A. 1994 Oct 11;91(21):10168–10172. doi: 10.1073/pnas.91.21.10168. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kono D. H., Theofilopoulos A. N. Genetic contributions to SLE. J Autoimmun. 1996 Aug;9(4):437–452. doi: 10.1006/jaut.1996.0061. [DOI] [PubMed] [Google Scholar]
  23. Kotzin B. L., Lafferty J. A., Portanova J. P., Rubin R. L., Tan E. M. Monoclonal anti-histone autoantibodies derived from murine models of lupus. J Immunol. 1984 Nov;133(5):2554–2559. [PubMed] [Google Scholar]
  24. Krammer P. H. CD95(APO-1/Fas)-mediated apoptosis: live and let die. Adv Immunol. 1999;71:163–210. doi: 10.1016/s0065-2776(08)60402-2. [DOI] [PubMed] [Google Scholar]
  25. Lewis R. E., Jr, Cruse J. M., Johnson W. W., Mohammad A. Histopathology and cell-mediated immune reactivity in halothane-associated lymphomagenesis and autoimmunity to BXSB/Mp and MRL/Mp mice. Exp Mol Pathol. 1982 Jun;36(3):378–395. doi: 10.1016/0014-4800(82)90067-3. [DOI] [PubMed] [Google Scholar]
  26. Nielsen J. B., Hultman P. Strain dependence of steady-state retention and elimination of mercury in mice after prolonged exposure to mercury(II) chloride. Analyst. 1998 Jan;123(1):87–90. doi: 10.1039/a705215d. [DOI] [PubMed] [Google Scholar]
  27. Nordlind K. Biological effects of mercuric chloride, nickel sulphate and nickel chloride. Prog Med Chem. 1990;27:189–233. doi: 10.1016/s0079-6468(08)70292-3. [DOI] [PubMed] [Google Scholar]
  28. Nylander M., Friberg L., Lind B. Mercury concentrations in the human brain and kidneys in relation to exposure from dental amalgam fillings. Swed Dent J. 1987;11(5):179–187. [PubMed] [Google Scholar]
  29. Ochel M., Vohr H. W., Pfeiffer C., Gleichmann E. IL-4 is required for the IgE and IgG1 increase and IgG1 autoantibody formation in mice treated with mercuric chloride. J Immunol. 1991 May 1;146(9):3006–3011. [PubMed] [Google Scholar]
  30. Orlinick J. R., Vaishnaw A. K., Elkon K. B. Structure and function of Fas/Fas ligand. Int Rev Immunol. 1999;18(4):293–308. doi: 10.3109/08830189909088485. [DOI] [PubMed] [Google Scholar]
  31. Pollard K. M., Pearson D. L., Hultman P., Hildebrandt B., Kono D. H. Lupus-prone mice as models to study xenobiotic-induced acceleration of systemic autoimmunity. Environ Health Perspect. 1999 Oct;107 (Suppl 5):729–735. doi: 10.1289/ehp.99107s5729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Prud'homme G. J., Kono D. H., Theofilopoulos A. N. Quantitative polymerase chain reaction analysis reveals marked overexpression of interleukin-1 beta, interleukin-1 and interferon-gamma mRNA in the lymph nodes of lupus-prone mice. Mol Immunol. 1995 May;32(7):495–503. doi: 10.1016/0161-5890(95)00024-9. [DOI] [PubMed] [Google Scholar]
  33. Reimer G., Pollard K. M., Penning C. A., Ochs R. L., Lischwe M. A., Busch H., Tan E. M. Monoclonal autoantibody from a (New Zealand black x New Zealand white)F1 mouse and some human scleroderma sera target an Mr 34,000 nucleolar protein of the U3 RNP particle. Arthritis Rheum. 1987 Jul;30(7):793–800. doi: 10.1002/art.1780300709. [DOI] [PubMed] [Google Scholar]
  34. Sabzevari H., Propp S., Kono D. H., Theofilopoulos A. N. G1 arrest and high expression of cyclin kinase and apoptosis inhibitors in accumulated activated/memory phenotype CD4+ cells of older lupus mice. Eur J Immunol. 1997 Aug;27(8):1901–1910. doi: 10.1002/eji.1830270813. [DOI] [PubMed] [Google Scholar]
  35. Takeuchi K., Turley S. J., Tan E. M., Pollard K. M. Analysis of the autoantibody response to fibrillarin in human disease and murine models of autoimmunity. J Immunol. 1995 Jan 15;154(2):961–971. [PubMed] [Google Scholar]
  36. Theofilopoulos A. N. The basis of autoimmunity: Part I. Mechanisms of aberrant self-recognition. Immunol Today. 1995 Feb;16(2):90–98. doi: 10.1016/0167-5699(95)80095-6. [DOI] [PubMed] [Google Scholar]
  37. Vieten G., Grams B., Müller M., Hartung K., Emmendörffer A. Examination of the mononuclear phagocyte system in lupus-prone male BXSB mice. J Leukoc Biol. 1996 Mar;59(3):325–332. doi: 10.1002/jlb.59.3.325. [DOI] [PubMed] [Google Scholar]
  38. Wang J., Zheng L., Lobito A., Chan F. K., Dale J., Sneller M., Yao X., Puck J. M., Straus S. E., Lenardo M. J. Inherited human Caspase 10 mutations underlie defective lymphocyte and dendritic cell apoptosis in autoimmune lymphoproliferative syndrome type II. Cell. 1999 Jul 9;98(1):47–58. doi: 10.1016/S0092-8674(00)80605-4. [DOI] [PubMed] [Google Scholar]
  39. Whitekus M. J., Santini R. P., Rosenspire A. J., McCabe M. J., Jr Protection against CD95-mediated apoptosis by inorganic mercury in Jurkat T cells. J Immunol. 1999 Jun 15;162(12):7162–7170. [PubMed] [Google Scholar]
  40. Wofsy D., Kerger C. E., Seaman W. E. Monocytosis in the BXSB model for systemic lupus erythematosus. J Exp Med. 1984 Feb 1;159(2):629–634. doi: 10.1084/jem.159.2.629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. al-Balaghi S., Möller E., Möller G., Abedi-Valugerdi M. Mercury induces polyclonal B cell activation, autoantibody production and renal immune complex deposits in young (NZB x NZW)F1 hybrids. Eur J Immunol. 1996 Jul;26(7):1519–1526. doi: 10.1002/eji.1830260717. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES