Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2001 Jan;109(1):55–60. doi: 10.1289/ehp.0110955

The mouse uterotrophic assay: a reevaluation of its validity in assessing the estrogenicity of bisphenol A.

C M Markey 1, C L Michaelson 1, E C Veson 1, C Sonnenschein 1, A M Soto 1
PMCID: PMC1242051  PMID: 11171525

Abstract

The prevalence of synthetic chemicals in our environment that are capable of mimicking the female hormone estrogen is a growing concern. One such chemical, bisphenol A (BPA), has been shown to leach from a variety of resin-based and plastic products, including dental sealants and food and beverage containers, in concentrations that are sufficient to induce cell proliferation in vitro. The response to BPA in vivo has been varied; thus the aims of this study were to investigate a) whether BPA has an estrogenic effect in CD-1 mice, a strain that is useful for developmental studies; and b) whether the uterotrophic assay is a valid means of determining the estrogenicity of BPA by comparing it with other end points measured in the uterus. Immature female CD-1 mice were exposed to BPA in concentrations ranging from 0.1 to 100 mg/kg body weight for 3 days. Results showed that BPA induced a significant increase in the height of luminal epithelial cells within the uterus at concentrations of 5, 75, and 100 mg/kg and that BPA induced lactoferrin at concentrations of 75 and 100 mg/kg. A uterotrophic response (increase in uterine wet weight) was induced by 100 mg/kg BPA only. Further, the proportion of mice showing vaginal opening was greater after exposure to 0.1 and 100 mg/kg BPA, relative to the control animals and those receiving intermediate doses of BPA. These results demonstrate that BPA induces changes in the mouse uterus that differ depending on the exposure dose and the end point measured, and reveal that certain tissue effects show a nonmonotonic relationship with dose. These data also demonstrate that BPA induces estrogenic changes in the uterus of the CD-1 mouse, and highlight the need to reevaluate the validity of the mouse uterotrophic assay as an end point for determining the estrogenicity of suspected environmental estrogens.

Full Text

The Full Text of this article is available as a PDF (116.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aisen P., Listowsky I. Iron transport and storage proteins. Annu Rev Biochem. 1980;49:357–393. doi: 10.1146/annurev.bi.49.070180.002041. [DOI] [PubMed] [Google Scholar]
  2. Arnold R. R., Cole M. F., McGhee J. R. A bactericidal effect for human lactoferrin. Science. 1977 Jul 15;197(4300):263–265. doi: 10.1126/science.327545. [DOI] [PubMed] [Google Scholar]
  3. Ashby J., Tinwell H. Uterotrophic activity of bisphenol A in the immature rat. Environ Health Perspect. 1998 Nov;106(11):719–720. doi: 10.1289/ehp.98106719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brotons J. A., Olea-Serrano M. F., Villalobos M., Pedraza V., Olea N. Xenoestrogens released from lacquer coatings in food cans. Environ Health Perspect. 1995 Jun;103(6):608–612. doi: 10.1289/ehp.95103608. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Buhi W. C., Ducsay C. A., Bazer F. W., Roberts R. M. Iron transfer between the purple phosphatase uteroferrin and transferrin and its possible role in iron metabolism of the fetal pig. J Biol Chem. 1982 Feb 25;257(4):1712–1723. [PubMed] [Google Scholar]
  6. Coldham N. G., Dave M., Sivapathasundaram S., McDonnell D. P., Connor C., Sauer M. J. Evaluation of a recombinant yeast cell estrogen screening assay. Environ Health Perspect. 1997 Jul;105(7):734–742. doi: 10.1289/ehp.97105734. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Colerangle J. B., Roy D. Profound effects of the weak environmental estrogen-like chemical bisphenol A on the growth of the mammary gland of Noble rats. J Steroid Biochem Mol Biol. 1997 Jan;60(1-2):153–160. doi: 10.1016/s0960-0760(96)00130-6. [DOI] [PubMed] [Google Scholar]
  8. Damassa D. A., Lin T. M., Sonnenschein C., Soto A. M. Biological effects of sex hormone-binding globulin on androgen-induced proliferation and androgen metabolism in LNCaP prostate cells. Endocrinology. 1991 Jul;129(1):75–84. doi: 10.1210/endo-129-1-75. [DOI] [PubMed] [Google Scholar]
  9. Dodge J. A., Glasebrook A. L., Magee D. E., Phillips D. L., Sato M., Short L. L., Bryant H. U. Environmental estrogens: effects on cholesterol lowering and bone in the ovariectomized rat. J Steroid Biochem Mol Biol. 1996 Oct;59(2):155–161. doi: 10.1016/s0960-0760(96)00104-5. [DOI] [PubMed] [Google Scholar]
  10. Gaido K. W., Leonard L. S., Lovell S., Gould J. C., Babaï D., Portier C. J., McDonnell D. P. Evaluation of chemicals with endocrine modulating activity in a yeast-based steroid hormone receptor gene transcription assay. Toxicol Appl Pharmacol. 1997 Mar;143(1):205–212. doi: 10.1006/taap.1996.8069. [DOI] [PubMed] [Google Scholar]
  11. Gellert R. J., Lewis J., Pétra P. H. Neonatal treatment with sex steroids: relationship between the uterotropic response and the estrogen "receptor" in prepubertal rats. Endocrinology. 1977 Feb;100(2):520–528. doi: 10.1210/endo-100-2-520. [DOI] [PubMed] [Google Scholar]
  12. Hammond G. L. Potential functions of plasma steroid-binding proteins. Trends Endocrinol Metab. 1995 Nov-Dec;6(9-10):298–304. doi: 10.1016/1043-2760(95)00162-x. [DOI] [PubMed] [Google Scholar]
  13. Howdeshell K. L., Hotchkiss A. K., Thayer K. A., Vandenbergh J. G., vom Saal F. S. Exposure to bisphenol A advances puberty. Nature. 1999 Oct 21;401(6755):763–764. doi: 10.1038/44517. [DOI] [PubMed] [Google Scholar]
  14. Karlsson S., Iatropoulos M. J., Williams G. M., Kangas L., Nieminen L. The proliferation in uterine compartments of intact rats of two different strains exposed to high doses of tamoxifen or toremifene. Toxicol Pathol. 1998 Nov-Dec;26(6):759–768. doi: 10.1177/019262339802600608. [DOI] [PubMed] [Google Scholar]
  15. Kelman Z. PCNA: structure, functions and interactions. Oncogene. 1997 Feb 13;14(6):629–640. doi: 10.1038/sj.onc.1200886. [DOI] [PubMed] [Google Scholar]
  16. Kloas W., Lutz I., Einspanier R. Amphibians as a model to study endocrine disruptors: II. Estrogenic activity of environmental chemicals in vitro and in vivo. Sci Total Environ. 1999 Jan 12;225(1-2):59–68. doi: 10.1016/s0048-9697(99)80017-5. [DOI] [PubMed] [Google Scholar]
  17. Korach K. S., Metzler M., McLachlan J. A. Estrogenic activity in vivo and in vitro of some diethylstilbestrol metabolites and analogs. Proc Natl Acad Sci U S A. 1978 Jan;75(1):468–471. doi: 10.1073/pnas.75.1.468. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Krishnan A. V., Stathis P., Permuth S. F., Tokes L., Feldman D. Bisphenol-A: an estrogenic substance is released from polycarbonate flasks during autoclaving. Endocrinology. 1993 Jun;132(6):2279–2286. doi: 10.1210/endo.132.6.8504731. [DOI] [PubMed] [Google Scholar]
  19. Kuiper G. G., Carlsson B., Grandien K., Enmark E., Häggblad J., Nilsson S., Gustafsson J. A. Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors alpha and beta. Endocrinology. 1997 Mar;138(3):863–870. doi: 10.1210/endo.138.3.4979. [DOI] [PubMed] [Google Scholar]
  20. Kuiper G. G., Lemmen J. G., Carlsson B., Corton J. C., Safe S. H., van der Saag P. T., van der Burg B., Gustafsson J. A. Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta. Endocrinology. 1998 Oct;139(10):4252–4263. doi: 10.1210/endo.139.10.6216. [DOI] [PubMed] [Google Scholar]
  21. Lambert C., Larroque M. Chromatographic analysis of water and wine samples for phenolic compounds released from food-contact epoxy resins. J Chromatogr Sci. 1997 Feb;35(2):57–62. doi: 10.1093/chromsci/35.2.57. [DOI] [PubMed] [Google Scholar]
  22. Li S. Relationship between cellular DNA synthesis, PCNA expression and sex steroid hormone receptor status in the developing mouse ovary, uterus and oviduct. Histochemistry. 1994 Nov;102(5):405–413. doi: 10.1007/BF00268912. [DOI] [PubMed] [Google Scholar]
  23. Milligan S. R., Khan O., Nash M. Competitive binding of xenobiotic oestrogens to rat alpha-fetoprotein and to sex steroid binding proteins in human and rainbow trout (Oncorhynchus mykiss) plasma. Gen Comp Endocrinol. 1998 Oct;112(1):89–95. doi: 10.1006/gcen.1998.7146. [DOI] [PubMed] [Google Scholar]
  24. Nagel S. C., vom Saal F. S., Thayer K. A., Dhar M. G., Boechler M., Welshons W. V. Relative binding affinity-serum modified access (RBA-SMA) assay predicts the relative in vivo bioactivity of the xenoestrogens bisphenol A and octylphenol. Environ Health Perspect. 1997 Jan;105(1):70–76. doi: 10.1289/ehp.9710570. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Newbold R. R., Hanson R. B., Jefferson W. N. Ontogeny of lactoferrin in the developing mouse uterus: a marker of early hormone response. Biol Reprod. 1997 May;56(5):1147–1157. doi: 10.1095/biolreprod56.5.1147. [DOI] [PubMed] [Google Scholar]
  26. Newbold R. R., Teng C. T., Beckman W. C., Jr, Jefferson W. N., Hanson R. B., Miller J. V., McLachlan J. A. Fluctuations of lactoferrin protein and messenger ribonucleic acid in the reproductive tract of the mouse during the estrous cycle. Biol Reprod. 1992 Nov;47(5):903–915. doi: 10.1095/biolreprod47.5.903. [DOI] [PubMed] [Google Scholar]
  27. Nonneman D. J., Ganjam V. K., Welshons W. V., Vom Saal F. S. Intrauterine position effects on steroid metabolism and steroid receptors of reproductive organs in male mice. Biol Reprod. 1992 Nov;47(5):723–729. doi: 10.1095/biolreprod47.5.723. [DOI] [PubMed] [Google Scholar]
  28. Ogle T. F., George P., Dai D. Progesterone and estrogen regulation of rat decidual cell expression of proliferating cell nuclear antigen. Biol Reprod. 1998 Aug;59(2):444–450. doi: 10.1095/biolreprod59.2.444. [DOI] [PubMed] [Google Scholar]
  29. Olea N., Pulgar R., Pérez P., Olea-Serrano F., Rivas A., Novillo-Fertrell A., Pedraza V., Soto A. M., Sonnenschein C. Estrogenicity of resin-based composites and sealants used in dentistry. Environ Health Perspect. 1996 Mar;104(3):298–305. doi: 10.1289/ehp.96104298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Pentecost B. T., Teng C. T. Lactotransferrin is the major estrogen inducible protein of mouse uterine secretions. J Biol Chem. 1987 Jul 25;262(21):10134–10139. [PubMed] [Google Scholar]
  31. Soto A. M., Sonnenschein C., Chung K. L., Fernandez M. F., Olea N., Serrano F. O. The E-SCREEN assay as a tool to identify estrogens: an update on estrogenic environmental pollutants. Environ Health Perspect. 1995 Oct;103 (Suppl 7):113–122. doi: 10.1289/ehp.95103s7113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Spearow J. L., Doemeny P., Sera R., Leffler R., Barkley M. Genetic variation in susceptibility to endocrine disruption by estrogen in mice. Science. 1999 Aug 20;285(5431):1259–1261. doi: 10.1126/science.285.5431.1259. [DOI] [PubMed] [Google Scholar]
  33. Steinmetz R., Brown N. G., Allen D. L., Bigsby R. M., Ben-Jonathan N. The environmental estrogen bisphenol A stimulates prolactin release in vitro and in vivo. Endocrinology. 1997 May;138(5):1780–1786. doi: 10.1210/endo.138.5.5132. [DOI] [PubMed] [Google Scholar]
  34. Steinmetz R., Mitchner N. A., Grant A., Allen D. L., Bigsby R. M., Ben-Jonathan N. The xenoestrogen bisphenol A induces growth, differentiation, and c-fos gene expression in the female reproductive tract. Endocrinology. 1998 Jun;139(6):2741–2747. doi: 10.1210/endo.139.6.6027. [DOI] [PubMed] [Google Scholar]
  35. Teng C. T., Pentecost B. T., Chen Y. H., Newbold R. R., Eddy E. M., McLachlan J. A. Lactotransferrin gene expression in the mouse uterus and mammary gland. Endocrinology. 1989 Feb;124(2):992–999. doi: 10.1210/endo-124-2-992. [DOI] [PubMed] [Google Scholar]
  36. Teng C. T., Walker M. P., Bhattacharyya S. N., Klapper D. G., DiAugustine R. P., McLachlan J. A. Purification and properties of an oestrogen-stimulated mouse uterine glycoprotein (approx. 70 kDa). Biochem J. 1986 Dec 1;240(2):413–422. doi: 10.1042/bj2400413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. vom Saal F. S., Timms B. G., Montano M. M., Palanza P., Thayer K. A., Nagel S. C., Dhar M. D., Ganjam V. K., Parmigiani S., Welshons W. V. Prostate enlargement in mice due to fetal exposure to low doses of estradiol or diethylstilbestrol and opposite effects at high doses. Proc Natl Acad Sci U S A. 1997 Mar 4;94(5):2056–2061. doi: 10.1073/pnas.94.5.2056. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES