Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2001 Oct;109(10):995–999. doi: 10.1289/ehp.01109995

Influence of bone resorption on the mobilization of lead from bone among middle-aged and elderly men: the Normative Aging Study.

S W Tsaih 1, S Korrick 1, J Schwartz 1, M L Lee 1, C Amarasiriwardena 1, A Aro 1, D Sparrow 1, H Hu 1
PMCID: PMC1242074  PMID: 11675263

Abstract

Bone stores of lead accrued from environmental exposures and found in most of the general population have recently been linked to the development of hypertension, cognitive decrements, and adverse reproductive outcomes. The skeleton is the major endogenous source of lead in circulating blood, particularly under conditions of accelerated bone turnover and mineral loss, such as during pregnancy and in postmenopausal osteoporosis. We studied the influence of bone resorption rate on the release of lead from bone in 333 men, predominantly white, middle-aged and elderly (mostly retired) from the Boston area. We evaluated bone resorption by measuring cross-linked N-telopeptides of type I collagen (NTx) in 24-hr urine samples with an enzyme-linked immunosorbent assay. We used K-X-ray fluorescence to measure lead content in cortical (tibia) and trabecular (patella) bone; we used graphite furnace atomic absorption spectroscopy and inductively coupled plasma mass spectroscopy to measure lead in blood and urine, respectively. After adjustment for age and creatinine clearance, the positive relation of patella lead to urinary lead was stronger among subjects in the upper two NTx tertiles (beta for patella lead > or =0.015) than in the lowest NTx tertile (beta for patella lead = 0.008; overall p-value for interactions = 0.06). In contrast, we found no statistically significant influence of NTx tertile on the relationship of blood lead to urinary lead. As expected, the magnitude of the relationship of bone lead to urinary lead diminished after adjustment for blood lead. Nevertheless, the pattern of the relationships of bone lead to urinary lead across NTx tertiles remained unchanged. Furthermore, after adjustment for age, the relation of patella lead to blood lead was significantly stronger in the upper two NTx tertiles (beta for patella lead > or =0.125) than in the lowest NTx tertile (beta for patella lead = 0.072). The results provide evidence that bone resorption influences the release of bone lead stores (particularly patella lead) into the circulation.

Full Text

The Full Text of this article is available as a PDF (529.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barry P. S., Mossman D. B. Lead concentrations in human tissues. Br J Ind Med. 1970 Oct;27(4):339–351. doi: 10.1136/oem.27.4.339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bergdahl I. A., Schütz A., Gerhardsson L., Jensen A., Skerfving S. Lead concentrations in human plasma, urine and whole blood. Scand J Work Environ Health. 1997 Oct;23(5):359–363. doi: 10.5271/sjweh.232. [DOI] [PubMed] [Google Scholar]
  3. Bogden J. D., Gertner S. B., Christakos S., Kemp F. W., Yang Z., Katz S. R., Chu C. Dietary calcium modifies concentrations of lead and other metals and renal calbindin in rats. J Nutr. 1992 Jul;122(7):1351–1360. doi: 10.1093/jn/122.7.1351. [DOI] [PubMed] [Google Scholar]
  4. Bollen A. M., Kiyak H. A., Eyre D. R. Longitudinal evaluation of a bone resorption marker in elderly subjects. Osteoporos Int. 1997;7(6):544–549. doi: 10.1007/BF02652560. [DOI] [PubMed] [Google Scholar]
  5. Burger D. E., Milder F. L., Morsillo P. R., Adams B. B., Hu H. Automated bone lead analysis by K-x-ray fluorescence for the clinical environment. Basic Life Sci. 1990;55:287–292. doi: 10.1007/978-1-4613-1473-8_39. [DOI] [PubMed] [Google Scholar]
  6. Cake K. M., Bowins R. J., Vaillancourt C., Gordon C. L., McNutt R. H., Laporte R., Webber C. E., Chettle D. R. Partition of circulating lead between serum and red cells is different for internal and external sources of lead. Am J Ind Med. 1996 May;29(5):440–445. doi: 10.1002/(SICI)1097-0274(199605)29:5<440::AID-AJIM2>3.0.CO;2-Q. [DOI] [PubMed] [Google Scholar]
  7. Cavalleri A., Minoia C., Pozzoli L., Baruffini A. Determination of plasma lead levels in normal subjects and in lead-exposed workers. Br J Ind Med. 1978 Feb;35(1):21–26. doi: 10.1136/oem.35.1.21. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dhawan M., Kachru D. N., Tandon S. K. Influence of thiamine and ascorbic acid supplementation on the antidotal efficacy of thiol chelators in experimental lead intoxication. Arch Toxicol. 1988;62(4):301–304. doi: 10.1007/BF00332491. [DOI] [PubMed] [Google Scholar]
  9. Flora S. J., Tandon S. K. Preventive and therapeutic effects of thiamine, ascorbic acid and their combination in lead intoxication. Acta Pharmacol Toxicol (Copenh) 1986 May;58(5):374–378. doi: 10.1111/j.1600-0773.1986.tb00124.x. [DOI] [PubMed] [Google Scholar]
  10. Franklin C. A., Inskip M. J., Baccanale C. L., Edwards C. M., Manton W. I., Edwards E., O'flaherty E. J. Use of sequentially administered stable lead isotopes to investigate changes in blood lead during pregnancy in a nonhuman primate (Macaca fascicularis). Fundam Appl Toxicol. 1997 Oct;39(2):109–119. doi: 10.1006/faat.1997.2355. [DOI] [PubMed] [Google Scholar]
  11. Gertz B. J., Shao P., Hanson D. A., Quan H., Harris S. T., Genant H. K., Chesnut C. H., 3rd, Eyre D. R. Monitoring bone resorption in early postmenopausal women by an immunoassay for cross-linked collagen peptides in urine. J Bone Miner Res. 1994 Feb;9(2):135–142. doi: 10.1002/jbmr.5650090202. [DOI] [PubMed] [Google Scholar]
  12. González-Cossío T., Peterson K. E., Sanín L. H., Fishbein E., Palazuelos E., Aro A., Hernández-Avila M., Hu H. Decrease in birth weight in relation to maternal bone-lead burden. Pediatrics. 1997 Nov;100(5):856–862. doi: 10.1542/peds.100.5.856. [DOI] [PubMed] [Google Scholar]
  13. Gulson B. L., Jameson C. W., Mahaffey K. R., Mizon K. J., Korsch M. J., Vimpani G. Pregnancy increases mobilization of lead from maternal skeleton. J Lab Clin Med. 1997 Jul;130(1):51–62. doi: 10.1016/s0022-2143(97)90058-5. [DOI] [PubMed] [Google Scholar]
  14. Gulson B. L., Mahaffey K. R., Jameson C. W., Mizon K. J., Korsch M. J., Cameron M. A., Eisman J. A. Mobilization of lead from the skeleton during the postnatal period is larger than during pregnancy. J Lab Clin Med. 1998 Apr;131(4):324–329. doi: 10.1016/s0022-2143(98)90182-2. [DOI] [PubMed] [Google Scholar]
  15. Hanson D. A., Weis M. A., Bollen A. M., Maslan S. L., Singer F. R., Eyre D. R. A specific immunoassay for monitoring human bone resorption: quantitation of type I collagen cross-linked N-telopeptides in urine. J Bone Miner Res. 1992 Nov;7(11):1251–1258. doi: 10.1002/jbmr.5650071119. [DOI] [PubMed] [Google Scholar]
  16. Hernandez-Avila M., Gonzalez-Cossio T., Palazuelos E., Romieu I., Aro A., Fishbein E., Peterson K. E., Hu H. Dietary and environmental determinants of blood and bone lead levels in lactating postpartum women living in Mexico City. Environ Health Perspect. 1996 Oct;104(10):1076–1082. doi: 10.1289/ehp.961041076. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hernández-Avila M., Smith D., Meneses F., Sanin L. H., Hu H. The influence of bone and blood lead on plasma lead levels in environmentally exposed adults. Environ Health Perspect. 1998 Aug;106(8):473–477. doi: 10.1289/ehp.106-1533211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hirata M., Yoshida T., Miyajima K., Kosaka H., Tabuchi T. Correlation between lead in plasma and other indicators of lead exposure among lead-exposed workers. Int Arch Occup Environ Health. 1995;68(1):58–63. doi: 10.1007/BF01831634. [DOI] [PubMed] [Google Scholar]
  19. Hu H., Aro A., Payton M., Korrick S., Sparrow D., Weiss S. T., Rotnitzky A. The relationship of bone and blood lead to hypertension. The Normative Aging Study. JAMA. 1996 Apr 17;275(15):1171–1176. [PubMed] [Google Scholar]
  20. Hu H., Milder F. L., Burger D. E. X-ray fluorescence measurements of lead burden in subjects with low-level community lead exposure. Arch Environ Health. 1990 Nov-Dec;45(6):335–341. doi: 10.1080/00039896.1990.10118752. [DOI] [PubMed] [Google Scholar]
  21. Hu H., Payton M., Korrick S., Aro A., Sparrow D., Weiss S. T., Rotnitzky A. Determinants of bone and blood lead levels among community-exposed middle-aged to elderly men. The normative aging study. Am J Epidemiol. 1996 Oct 15;144(8):749–759. doi: 10.1093/oxfordjournals.aje.a008999. [DOI] [PubMed] [Google Scholar]
  22. Kim R., Landrigan C., Mossmann P., Sparrow D., Hu H. Age and secular trends in bone lead levels in middle-aged and elderly men: three-year longitudinal follow-up in the Normative Aging Study. Am J Epidemiol. 1997 Oct 1;146(7):586–591. doi: 10.1093/oxfordjournals.aje.a009318. [DOI] [PubMed] [Google Scholar]
  23. Korrick S. A., Hunter D. J., Rotnitzky A., Hu H., Speizer F. E. Lead and hypertension in a sample of middle-aged women. Am J Public Health. 1999 Mar;89(3):330–335. doi: 10.2105/ajph.89.3.330. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Leggett R. W. An age-specific kinetic model of lead metabolism in humans. Environ Health Perspect. 1993 Dec;101(7):598–616. doi: 10.1289/ehp.93101598. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Manton W. I., Cook J. D. High accuracy (stable isotope dilution) measurements of lead in serum and cerebrospinal fluid. Br J Ind Med. 1984 Aug;41(3):313–319. doi: 10.1136/oem.41.3.313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Marcus A. H. Multicompartment kinetic models for lead. I. Bone diffusion models for long-term retention. Environ Res. 1985 Apr;36(2):441–458. doi: 10.1016/0013-9351(85)90037-4. [DOI] [PubMed] [Google Scholar]
  27. Nilsson U., Attewell R., Christoffersson J. O., Schütz A., Ahlgren L., Skerfving S., Mattsson S. Kinetics of lead in bone and blood after end of occupational exposure. Pharmacol Toxicol. 1991 Jun;68(6):477–484. doi: 10.1111/j.1600-0773.1991.tb01273.x. [DOI] [PubMed] [Google Scholar]
  28. O'Flaherty E. J. Physiologically based models for bone-seeking elements. IV. Kinetics of lead disposition in humans. Toxicol Appl Pharmacol. 1993 Jan;118(1):16–29. doi: 10.1006/taap.1993.1004. [DOI] [PubMed] [Google Scholar]
  29. Orwoll E. S., Oviatt S. K., McClung M. R., Deftos L. J., Sexton G. The rate of bone mineral loss in normal men and the effects of calcium and cholecalciferol supplementation. Ann Intern Med. 1990 Jan 1;112(1):29–34. doi: 10.7326/0003-4819-112-1-29. [DOI] [PubMed] [Google Scholar]
  30. Payton M., Riggs K. M., Spiro A., 3rd, Weiss S. T., Hu H. Relations of bone and blood lead to cognitive function: the VA Normative Aging Study. Neurotoxicol Teratol. 1998 Jan-Feb;20(1):19–27. doi: 10.1016/s0892-0362(97)00075-5. [DOI] [PubMed] [Google Scholar]
  31. Pirkle J. L., Brody D. J., Gunter E. W., Kramer R. A., Paschal D. C., Flegal K. M., Matte T. D. The decline in blood lead levels in the United States. The National Health and Nutrition Examination Surveys (NHANES) JAMA. 1994 Jul 27;272(4):284–291. [PubMed] [Google Scholar]
  32. Rabinowitz M. B. Toxicokinetics of bone lead. Environ Health Perspect. 1991 Feb;91:33–37. doi: 10.1289/ehp.919133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Rosen H. N., Dresner-Pollak R., Moses A. C., Rosenblatt M., Zeind A. J., Clemens J. D., Greenspan S. L. Specificity of urinary excretion of cross-linked N-telopeptides of type I collagen as a marker of bone turnover. Calcif Tissue Int. 1994 Jan;54(1):26–29. doi: 10.1007/BF00316285. [DOI] [PubMed] [Google Scholar]
  34. Salvini S., Hunter D. J., Sampson L., Stampfer M. J., Colditz G. A., Rosner B., Willett W. C. Food-based validation of a dietary questionnaire: the effects of week-to-week variation in food consumption. Int J Epidemiol. 1989 Dec;18(4):858–867. doi: 10.1093/ije/18.4.858. [DOI] [PubMed] [Google Scholar]
  35. Schneider D. L., Barrett-Connor E. L. Urinary N-telopeptide levels discriminate normal, osteopenic, and osteoporotic bone mineral density. Arch Intern Med. 1997 Jun 9;157(11):1241–1245. [PubMed] [Google Scholar]
  36. Schütz A., Skerfving S., Ranstam J., Christoffersson J. O. Kinetics of lead in blood after the end of occupational exposure. Scand J Work Environ Health. 1987 Jun;13(3):221–231. doi: 10.5271/sjweh.2059. [DOI] [PubMed] [Google Scholar]
  37. Silbergeld E. K., Schwartz J., Mahaffey K. Lead and osteoporosis: mobilization of lead from bone in postmenopausal women. Environ Res. 1988 Oct;47(1):79–94. doi: 10.1016/s0013-9351(88)80023-9. [DOI] [PubMed] [Google Scholar]
  38. Smith D. R., Ilustre R. P., Osterloh J. D. Methodological considerations for the accurate determination of lead in human plasma and serum. Am J Ind Med. 1998 May;33(5):430–438. doi: 10.1002/(sici)1097-0274(199805)33:5<430::aid-ajim2>3.0.co;2-w. [DOI] [PubMed] [Google Scholar]
  39. Smith D. R., Osterloh J. D., Flegal A. R. Use of endogenous, stable lead isotopes to determine release of lead from the skeleton. Environ Health Perspect. 1996 Jan;104(1):60–66. doi: 10.1289/ehp.9610460. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Stewart W. F., Schwartz B. S., Simon D., Bolla K. I., Todd A. C., Links J. Neurobehavioral function and tibial and chelatable lead levels in 543 former organolead workers. Neurology. 1999 May 12;52(8):1610–1617. doi: 10.1212/wnl.52.8.1610. [DOI] [PubMed] [Google Scholar]
  41. Tsaih S. W., Schwartz J., Lee M. L., Amarasiriwardena C., Aro A., Sparrow D., Hu H. The independent contribution of bone and erythrocyte lead to urinary lead among middle-aged and elderly men: the normative aging study. Environ Health Perspect. 1999 May;107(5):391–396. doi: 10.1289/ehp.99107391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Watanabe H., Hu H., Rotnitzky A. Correlates of bone and blood lead levels in carpenters. Am J Ind Med. 1994 Aug;26(2):255–264. doi: 10.1002/ajim.4700260211. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES