Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2001 Oct;109(10):1011–1017. doi: 10.1289/ehp.011091011

Association of blood arsenic levels with increased reactive oxidants and decreased antioxidant capacity in a human population of northeastern Taiwan.

M M Wu 1, H Y Chiou 1, T W Wang 1, Y M Hsueh 1, I H Wang 1, C J Chen 1, T C Lee 1
PMCID: PMC1242077  PMID: 11675266

Abstract

Arsenic is a notorious environmental toxicant known as both a carcinogen and an atherogen in human beings, but the pathogenic mechanisms are not completely understood. In cell culture studies, trivalent arsenic enhanced oxidative stress in a variety of mammalian cells, and this association may be closely associated with the development of arsenic-related diseases. To investigate the effect of arsenic exposure on oxidative stress in humans, we conducted a population study to determine the relationships of blood arsenic to reactive oxidants and antioxidant capacity at the individual level. We recruited 64 study subjects ages 42-75 years from residents of the Lanyang Basin on the northeast coast of Taiwan, where arsenic content in well water varies from 0 to > or = 3,000 microg/L. We used a chemiluminescence method, with lucigenin as an amplifier for measuring superoxide, to measure the plasma level of reactive oxidants. We used the azino-diethyl-benzthiazoline sulphate method to determine the antioxidant capacity level in plasma of each study subject. We determined arsenic concentration in whole blood by hydride formation with an atomic absorption spectrophotometer. The average arsenic concentration in whole blood of study subjects was 9.60 +/- 9.96 microg/L (+/- SD) with a range from 0 to 46.50 microg/L. The level of arsenic concentration in whole blood of study subjects showed a positive association with the level of reactive oxidants in plasma (r = +0.41, p = 0.001) and an inverse relationship with the level of plasma antioxidant capacity (r = -0.30, p = 0.014). However, we found no significant association (p = 0.266) between levels of plasma reactive oxidants and antioxidant capacity. Our results also show that the lower the primary arsenic methylation capability, the lower the level of plasma antioxidant capacity (p = 0.029). These results suggest that ingestion of arsenic-contaminated well water may cause deleterious effects by increasing the level of reactive oxidants and decreasing the level of antioxidant capacity in plasma of individuals. Persistent oxidative stress in peripheral blood may be a mechanism underlying the carcinogenesis and atherosclerosis induced by long-term arsenic exposure.

Full Text

The Full Text of this article is available as a PDF (551.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ames B. N., Shigenaga M. K., Hagen T. M. Oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci U S A. 1993 Sep 1;90(17):7915–7922. doi: 10.1073/pnas.90.17.7915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aposhian H. V. Enzymatic methylation of arsenic species and other new approaches to arsenic toxicity. Annu Rev Pharmacol Toxicol. 1997;37:397–419. doi: 10.1146/annurev.pharmtox.37.1.397. [DOI] [PubMed] [Google Scholar]
  3. Barchowsky A., Dudek E. J., Treadwell M. D., Wetterhahn K. E. Arsenic induces oxidant stress and NF-kappa B activation in cultured aortic endothelial cells. Free Radic Biol Med. 1996;21(6):783–790. doi: 10.1016/0891-5849(96)00174-8. [DOI] [PubMed] [Google Scholar]
  4. Barchowsky A., Klei L. R., Dudek E. J., Swartz H. M., James P. E. Stimulation of reactive oxygen, but not reactive nitrogen species, in vascular endothelial cells exposed to low levels of arsenite. Free Radic Biol Med. 1999 Dec;27(11-12):1405–1412. doi: 10.1016/s0891-5849(99)00186-0. [DOI] [PubMed] [Google Scholar]
  5. Bates M. N., Smith A. H., Hopenhayn-Rich C. Arsenic ingestion and internal cancers: a review. Am J Epidemiol. 1992 Mar 1;135(5):462–476. doi: 10.1093/oxfordjournals.aje.a116313. [DOI] [PubMed] [Google Scholar]
  6. Benzi G., Moretti A. Age- and peroxidative stress-related modifications of the cerebral enzymatic activities linked to mitochondria and the glutathione system. Free Radic Biol Med. 1995 Jul;19(1):77–101. doi: 10.1016/0891-5849(94)00244-e. [DOI] [PubMed] [Google Scholar]
  7. Burdon R. H. Superoxide and hydrogen peroxide in relation to mammalian cell proliferation. Free Radic Biol Med. 1995 Apr;18(4):775–794. doi: 10.1016/0891-5849(94)00198-s. [DOI] [PubMed] [Google Scholar]
  8. Cavigelli M., Li W. W., Lin A., Su B., Yoshioka K., Karin M. The tumor promoter arsenite stimulates AP-1 activity by inhibiting a JNK phosphatase. EMBO J. 1996 Nov 15;15(22):6269–6279. [PMC free article] [PubMed] [Google Scholar]
  9. Chen C. J., Chuang Y. C., Lin T. M., Wu H. Y. Malignant neoplasms among residents of a blackfoot disease-endemic area in Taiwan: high-arsenic artesian well water and cancers. Cancer Res. 1985 Nov;45(11 Pt 2):5895–5899. [PubMed] [Google Scholar]
  10. Chen C. J., Wang C. J. Ecological correlation between arsenic level in well water and age-adjusted mortality from malignant neoplasms. Cancer Res. 1990 Sep 1;50(17):5470–5474. [PubMed] [Google Scholar]
  11. Chen C. J., Wu M. M., Lee S. S., Wang J. D., Cheng S. H., Wu H. Y. Atherogenicity and carcinogenicity of high-arsenic artesian well water. Multiple risk factors and related malignant neoplasms of blackfoot disease. Arteriosclerosis. 1988 Sep-Oct;8(5):452–460. doi: 10.1161/01.atv.8.5.452. [DOI] [PubMed] [Google Scholar]
  12. Chen M. F., Mo L. R., Lin R. C., Kuo J. Y., Chang K. K., Liao C., Lu F. J. Increase of resting levels of superoxide anion in the whole blood of patients with decompensated liver cirrhosis. Free Radic Biol Med. 1997;23(4):672–679. doi: 10.1016/s0891-5849(97)00057-9. [DOI] [PubMed] [Google Scholar]
  13. Chiou H. Y., Hsueh Y. M., Hsieh L. L., Hsu L. I., Hsu Y. H., Hsieh F. I., Wei M. L., Chen H. C., Yang H. T., Leu L. C. Arsenic methylation capacity, body retention, and null genotypes of glutathione S-transferase M1 and T1 among current arsenic-exposed residents in Taiwan. Mutat Res. 1997 Jun;386(3):197–207. doi: 10.1016/s1383-5742(97)00005-7. [DOI] [PubMed] [Google Scholar]
  14. Chiou H. Y., Hsueh Y. M., Liaw K. F., Horng S. F., Chiang M. H., Pu Y. S., Lin J. S., Huang C. H., Chen C. J. Incidence of internal cancers and ingested inorganic arsenic: a seven-year follow-up study in Taiwan. Cancer Res. 1995 Mar 15;55(6):1296–1300. [PubMed] [Google Scholar]
  15. Chiou H. Y., Huang W. I., Su C. L., Chang S. F., Hsu Y. H., Chen C. J. Dose-response relationship between prevalence of cerebrovascular disease and ingested inorganic arsenic. Stroke. 1997 Sep;28(9):1717–1723. doi: 10.1161/01.str.28.9.1717. [DOI] [PubMed] [Google Scholar]
  16. Cosgrove J. P., Borish E. T., Church D. F., Pryor W. A. The metal-mediated formation of hydroxyl radical by aqueous extracts of cigarette tar. Biochem Biophys Res Commun. 1985 Oct 15;132(1):390–396. doi: 10.1016/0006-291x(85)91034-4. [DOI] [PubMed] [Google Scholar]
  17. Dong Z., Ma W., Huang C., Yang C. S. Inhibition of tumor promoter-induced activator protein 1 activation and cell transformation by tea polyphenols, (-)-epigallocatechin gallate, and theaflavins. Cancer Res. 1997 Oct 1;57(19):4414–4419. [PubMed] [Google Scholar]
  18. Dreher D., Junod A. F. Role of oxygen free radicals in cancer development. Eur J Cancer. 1996 Jan;32A(1):30–38. doi: 10.1016/0959-8049(95)00531-5. [DOI] [PubMed] [Google Scholar]
  19. Farber J. L. Mechanisms of cell injury by activated oxygen species. Environ Health Perspect. 1994 Dec;102 (Suppl 10):17–24. doi: 10.1289/ehp.94102s1017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Feig D. I., Reid T. M., Loeb L. A. Reactive oxygen species in tumorigenesis. Cancer Res. 1994 Apr 1;54(7 Suppl):1890s–1894s. [PubMed] [Google Scholar]
  21. Frei B., Forte T. M., Ames B. N., Cross C. E. Gas phase oxidants of cigarette smoke induce lipid peroxidation and changes in lipoprotein properties in human blood plasma. Protective effects of ascorbic acid. Biochem J. 1991 Jul 1;277(Pt 1):133–138. doi: 10.1042/bj2770133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Georis B., Cardenas A., Buchet J. P., Lauwerys R. Inorganic arsenic methylation by rat tissue slices. Toxicology. 1990 Jul;63(1):73–84. doi: 10.1016/0300-483x(90)90070-w. [DOI] [PubMed] [Google Scholar]
  23. Halliwell B., Gutteridge J. M. The antioxidants of human extracellular fluids. Arch Biochem Biophys. 1990 Jul;280(1):1–8. doi: 10.1016/0003-9861(90)90510-6. [DOI] [PubMed] [Google Scholar]
  24. Harris E. D. Regulation of antioxidant enzymes. FASEB J. 1992 Jun;6(9):2675–2683. doi: 10.1096/fasebj.6.9.1612291. [DOI] [PubMed] [Google Scholar]
  25. Hengstler J. G., Arand M., Herrero M. E., Oesch F. Polymorphisms of N-acetyltransferases, glutathione S-transferases, microsomal epoxide hydrolase and sulfotransferases: influence on cancer susceptibility. Recent Results Cancer Res. 1998;154:47–85. doi: 10.1007/978-3-642-46870-4_4. [DOI] [PubMed] [Google Scholar]
  26. Hsueh Y. M., Chiou H. Y., Huang Y. L., Wu W. L., Huang C. C., Yang M. H., Lue L. C., Chen G. S., Chen C. J. Serum beta-carotene level, arsenic methylation capability, and incidence of skin cancer. Cancer Epidemiol Biomarkers Prev. 1997 Aug;6(8):589–596. [PubMed] [Google Scholar]
  27. Hsueh Y. M., Wu W. L., Huang Y. L., Chiou H. Y., Tseng C. H., Chen C. J. Low serum carotene level and increased risk of ischemic heart disease related to long-term arsenic exposure. Atherosclerosis. 1998 Dec;141(2):249–257. doi: 10.1016/s0021-9150(98)00178-6. [DOI] [PubMed] [Google Scholar]
  28. Huang R. N., Ho I. C., Yih L. H., Lee T. C. Sodium arsenite induces chromosome endoreduplication and inhibits protein phosphatase activity in human fibroblasts. Environ Mol Mutagen. 1995;25(3):188–196. doi: 10.1002/em.2850250304. [DOI] [PubMed] [Google Scholar]
  29. Ishii H., Kurose I., Kato S. Pathogenesis of alcoholic liver disease with particular emphasis on oxidative stress. J Gastroenterol Hepatol. 1997 Oct;12(9-10):S272–S282. doi: 10.1111/j.1440-1746.1997.tb00510.x. [DOI] [PubMed] [Google Scholar]
  30. Jacobson-Kram D., Montalbano D. The reproductive effects assessment group's report on the mutagenicity of inorganic arsenic. Environ Mutagen. 1985;7(5):787–804. doi: 10.1002/em.2860070515. [DOI] [PubMed] [Google Scholar]
  31. King C. M., Bristow-Craig H. E., Gillespie E. S., Barnett Y. A. In vivo antioxidant status, DNA damage, mutation and DNA repair capacity in cultured lymphocytes from healthy 75- to 80-year-old humans. Mutat Res. 1997 Jun 9;377(1):137–147. doi: 10.1016/s0027-5107(97)00072-9. [DOI] [PubMed] [Google Scholar]
  32. Lee T. C., Ho I. C. Modulation of cellular antioxidant defense activities by sodium arsenite in human fibroblasts. Arch Toxicol. 1995;69(7):498–504. doi: 10.1007/s002040050204. [DOI] [PubMed] [Google Scholar]
  33. Lee T. C., Huang R. Y., Jan K. Y. Sodium arsenite enhances the cytotoxicity, clastogenicity, and 6-thioguanine-resistant mutagenicity of ultraviolet light in Chinese hamster ovary cells. Mutat Res. 1985 Jan-Feb;148(1-2):83–89. doi: 10.1016/0027-5107(85)90210-6. [DOI] [PubMed] [Google Scholar]
  34. Lee T. C., Lee K. C., Tzeng Y. J., Huang R. Y., Jan K. Y. Sodium arsenite potentiates the clastogenicity and mutagenicity of DNA crosslinking agents. Environ Mutagen. 1986;8(1):119–128. doi: 10.1002/em.2860080111. [DOI] [PubMed] [Google Scholar]
  35. Lee T. C., Oshimura M., Barrett J. C. Comparison of arsenic-induced cell transformation, cytotoxicity, mutation and cytogenetic effects in Syrian hamster embryo cells in culture. Carcinogenesis. 1985 Oct;6(10):1421–1426. doi: 10.1093/carcin/6.10.1421. [DOI] [PubMed] [Google Scholar]
  36. Lee T. C., Tanaka N., Lamb P. W., Gilmer T. M., Barrett J. C. Induction of gene amplification by arsenic. Science. 1988 Jul 1;241(4861):79–81. doi: 10.1126/science.3388020. [DOI] [PubMed] [Google Scholar]
  37. Lee T. C., Wang-Wuu S., Huang R. Y., Lee K. C., Jan K. Y. Differential effects of pre- and posttreatment of sodium arsenite on the genotoxicity of methyl methanesulfonate in Chinese hamster ovary cells. Cancer Res. 1986 Apr;46(4 Pt 1):1854–1857. [PubMed] [Google Scholar]
  38. Lilienfeld D. E. Arsenic, geographical isolates, environmental epidemiology, and arteriosclerosis. Arteriosclerosis. 1988 Sep-Oct;8(5):449–451. doi: 10.1161/01.atv.8.5.449. [DOI] [PubMed] [Google Scholar]
  39. Liu Y., Guyton K. Z., Gorospe M., Xu Q., Lee J. C., Holbrook N. J. Differential activation of ERK, JNK/SAPK and P38/CSBP/RK map kinase family members during the cellular response to arsenite. Free Radic Biol Med. 1996;21(6):771–781. doi: 10.1016/0891-5849(96)00176-1. [DOI] [PubMed] [Google Scholar]
  40. Lo J. F., Wang H. F., Tam M. F., Lee T. C. Glutathione S-transferase pi in an arsenic-resistant Chinese hamster ovary cell line. Biochem J. 1992 Dec 15;288(Pt 3):977–982. doi: 10.1042/bj2880977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Lu F. J., Lin J. T., Wang H. P., Huang W. C. A simple, sensitive, non-stimulated photon counting system for detection of superoxide anion in whole blood. Experientia. 1996 Feb 15;52(2):141–144. doi: 10.1007/BF01923359. [DOI] [PubMed] [Google Scholar]
  42. Lynn S., Shiung J. N., Gurr J. R., Jan K. Y. Arsenite stimulates poly(ADP-ribosylation) by generation of nitric oxide. Free Radic Biol Med. 1998 Feb;24(3):442–449. doi: 10.1016/s0891-5849(97)00279-7. [DOI] [PubMed] [Google Scholar]
  43. Mufti S. I. Alcohol acts to promote incidence of tumors. Cancer Detect Prev. 1992;16(3):157–162. [PubMed] [Google Scholar]
  44. Nordenson I., Beckman L. Is the genotoxic effect of arsenic mediated by oxygen free radicals? Hum Hered. 1991;41(1):71–73. doi: 10.1159/000153979. [DOI] [PubMed] [Google Scholar]
  45. Pinkus R., Weiner L. M., Daniel V. Role of oxidants and antioxidants in the induction of AP-1, NF-kappaB, and glutathione S-transferase gene expression. J Biol Chem. 1996 Jun 7;271(23):13422–13429. doi: 10.1074/jbc.271.23.13422. [DOI] [PubMed] [Google Scholar]
  46. Salah N., Miller N. J., Paganga G., Tijburg L., Bolwell G. P., Rice-Evans C. Polyphenolic flavanols as scavengers of aqueous phase radicals and as chain-breaking antioxidants. Arch Biochem Biophys. 1995 Oct 1;322(2):339–346. doi: 10.1006/abbi.1995.1473. [DOI] [PubMed] [Google Scholar]
  47. Sun J. S., Hang Y. S., Huang I. H., Lu F. J. A simple chemiluminescence assay for detecting oxidative stress in ischemic limb injury. Free Radic Biol Med. 1996;20(1):107–112. doi: 10.1016/0891-5849(95)02011-x. [DOI] [PubMed] [Google Scholar]
  48. Thompson D. J. A chemical hypothesis for arsenic methylation in mammals. Chem Biol Interact. 1993 Sep;88(2-3):89–14. doi: 10.1016/0009-2797(93)90086-e. [DOI] [PubMed] [Google Scholar]
  49. Tse W. Y., Maxwell S. R., Thomason H., Blann A., Thorpe G. H., Waite M., Holder R. Antioxidant status in controlled and uncontrolled hypertension and its relationship to endothelial damage. J Hum Hypertens. 1994 Nov;8(11):843–849. [PubMed] [Google Scholar]
  50. Wang C. T., Huang C. W., Chou S. S., Lin D. T., Liau S. R., Wang R. T. Studies on the concentration of arsenic, selenium, copper, zinc and iron in the blood of blackfoot disease patients in different clinical stages. Eur J Clin Chem Clin Biochem. 1993 Nov;31(11):759–763. doi: 10.1515/cclm.1993.31.11.759. [DOI] [PubMed] [Google Scholar]
  51. Wang T. S., Huang H. Active oxygen species are involved in the induction of micronuclei by arsenite in XRS-5 cells. Mutagenesis. 1994 May;9(3):253–257. doi: 10.1093/mutage/9.3.253. [DOI] [PubMed] [Google Scholar]
  52. Watson M. A., Stewart R. K., Smith G. B., Massey T. E., Bell D. A. Human glutathione S-transferase P1 polymorphisms: relationship to lung tissue enzyme activity and population frequency distribution. Carcinogenesis. 1998 Feb;19(2):275–280. doi: 10.1093/carcin/19.2.275. [DOI] [PubMed] [Google Scholar]
  53. Wiseman H., Halliwell B. Damage to DNA by reactive oxygen and nitrogen species: role in inflammatory disease and progression to cancer. Biochem J. 1996 Jan 1;313(Pt 1):17–29. doi: 10.1042/bj3130017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Woo J., Leung S. S., Lam C. W., Ho S. C., Lam T. H., Janus E. D. Plasma total antioxidant capacity in an adult Hong Kong Chinese population. Clin Biochem. 1997 Oct;30(7):553–557. doi: 10.1016/s0009-9120(97)00112-4. [DOI] [PubMed] [Google Scholar]
  55. Wu M. M., Kuo T. L., Hwang Y. H., Chen C. J. Dose-response relation between arsenic concentration in well water and mortality from cancers and vascular diseases. Am J Epidemiol. 1989 Dec;130(6):1123–1132. doi: 10.1093/oxfordjournals.aje.a115439. [DOI] [PubMed] [Google Scholar]
  56. Yamanaka K., Hasegawa A., Sawamura R., Okada S. Cellular response to oxidative damage in lung induced by the administration of dimethylarsinic acid, a major metabolite of inorganic arsenics, in mice. Toxicol Appl Pharmacol. 1991 Apr;108(2):205–213. doi: 10.1016/0041-008x(91)90111-q. [DOI] [PubMed] [Google Scholar]
  57. Yih L. H., Ho I. C., Lee T. C. Sodium arsenite disturbs mitosis and induces chromosome loss in human fibroblasts. Cancer Res. 1997 Nov 15;57(22):5051–5059. [PubMed] [Google Scholar]
  58. Yih L. H., Lee T. C. Effects of exposure protocols on induction of kinetochore-plus and -minus micronuclei by arsenite in diploid human fibroblasts. Mutat Res. 1999 Mar 15;440(1):75–82. doi: 10.1016/s1383-5718(99)00008-x. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES