Abstract
In this study we assessed the in vitro toxicity of 14 paired indoor and outdoor PM(2.5) samples (particulate matter < or =2.5 microm in aerodynamic diameter) collected in 9 Boston-area homes. Samples were collected as part of a large indoor particle characterization study that included the simultaneous measurement of indoor and outdoor PM(2.5), particle size distributions, and compositional data (e.g., elemental/organic carbon, endotoxin, etc.). Bioassays were conducted using rat alveolar macrophages (AMs), and tumor necrosis factor (TNF) was measured to assess particle-induced proinflammatory responses. Additional experiments were also conducted in which AMs were primed with lipopolysaccharides (LPS) to simulate preexisting pulmonary inflammation such as that which might exist in sick and elderly individuals. Significant TNF production above that of negative controls was observed for AMs exposed to either indoor or outdoor PM(2.5). TNF releases were further amplified for primed AMs, suggesting that preexisting inflammation can potentially exacerbate the toxicity of not only outdoor PM(2.5) (as shown by previous studies) but also indoor PM(2.5). In addition, indoor particle TNF production was found to be significantly higher than outdoor particle TNF production in unprimed AMs, both before and after normalization for endotoxin concentrations. Our results suggest that indoor-generated particles may be more bioactive than ambient particles. Endotoxin was demonstrated to mediate proinflammatory responses for both indoor and outdoor PM(2.5), but study findings suggest the presence of other proinflammatory components of fine particles, particularly for indoor-generated particles. Given these study findings and the fact that people spend 85-90% of their time indoors, future studies are needed to address the toxicity of indoor particles.
Full Text
The Full Text of this article is available as a PDF (572.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abt E., Suh H. H., Allen G., Koutrakis P. Characterization of indoor particle sources: A study conducted in the metropolitan Boston area. Environ Health Perspect. 2000 Jan;108(1):35–44. doi: 10.1289/ehp.0010835. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Becker S., Soukup J. M., Gilmour M. I., Devlin R. B. Stimulation of human and rat alveolar macrophages by urban air particulates: effects on oxidant radical generation and cytokine production. Toxicol Appl Pharmacol. 1996 Dec;141(2):637–648. doi: 10.1006/taap.1996.0330. [DOI] [PubMed] [Google Scholar]
- Carter J. D., Ghio A. J., Samet J. M., Devlin R. B. Cytokine production by human airway epithelial cells after exposure to an air pollution particle is metal-dependent. Toxicol Appl Pharmacol. 1997 Oct;146(2):180–188. doi: 10.1006/taap.1997.8254. [DOI] [PubMed] [Google Scholar]
- Delfino R. J., Zeiger R. S., Seltzer J. M., Street D. H. Symptoms in pediatric asthmatics and air pollution: differences in effects by symptom severity, anti-inflammatory medication use and particulate averaging time. Environ Health Perspect. 1998 Nov;106(11):751–761. doi: 10.1289/ehp.98106751. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dong W., Lewtas J., Luster M. I. Role of endotoxin in tumor necrosis factor alpha expression from alveolar macrophages treated with urban air particles. Exp Lung Res. 1996 Sep-Oct;22(5):577–592. doi: 10.3109/01902149609046043. [DOI] [PubMed] [Google Scholar]
- Driscoll K. E. TNFalpha and MIP-2: role in particle-induced inflammation and regulation by oxidative stress. Toxicol Lett. 2000 Mar 15;112-113:177–183. doi: 10.1016/s0378-4274(99)00282-9. [DOI] [PubMed] [Google Scholar]
- Drumm K., Schindler H., Buhl R., Küstner E., Smolarski R., Kienast K. Indoor air pollutants stimulate interleukin-8-specific mRNA expression and protein secretion of alveolar macrophages. Lung. 1999;177(1):9–19. doi: 10.1007/pl00007628. [DOI] [PubMed] [Google Scholar]
- Dubowsky S. D., Wallace L. A., Buckley T. J. The contribution of traffic to indoor concentrations of polycyclic aromatic hydrocarbons. J Expo Anal Environ Epidemiol. 1999 Jul-Aug;9(4):312–321. doi: 10.1038/sj.jea.7500034. [DOI] [PubMed] [Google Scholar]
- Frampton M. W., Ghio A. J., Samet J. M., Carson J. L., Carter J. D., Devlin R. B. Effects of aqueous extracts of PM(10) filters from the Utah valley on human airway epithelial cells. Am J Physiol. 1999 Nov;277(5 Pt 1):L960–L967. doi: 10.1152/ajplung.1999.277.5.L960. [DOI] [PubMed] [Google Scholar]
- Gold D. R., Litonjua A., Schwartz J., Lovett E., Larson A., Nearing B., Allen G., Verrier M., Cherry R., Verrier R. Ambient pollution and heart rate variability. Circulation. 2000 Mar 21;101(11):1267–1273. doi: 10.1161/01.cir.101.11.1267. [DOI] [PubMed] [Google Scholar]
- Goldsmith C. A., Frevert C., Imrich A., Sioutas C., Kobzik L. Alveolar macrophage interaction with air pollution particulates. Environ Health Perspect. 1997 Sep;105 (Suppl 5):1191–1195. doi: 10.1289/ehp.97105s51191. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Imrich A., Ning Y. Y., Koziel H., Coull B., Kobzik L. Lipopolysaccharide priming amplifies lung macrophage tumor necrosis factor production in response to air particles. Toxicol Appl Pharmacol. 1999 Sep 1;159(2):117–124. doi: 10.1006/taap.1999.8731. [DOI] [PubMed] [Google Scholar]
- Imrich A., Ning Y., Kobzik L. Insoluble components of concentrated air particles mediate alveolar macrophage responses in vitro. Toxicol Appl Pharmacol. 2000 Sep 1;167(2):140–150. doi: 10.1006/taap.2000.9002. [DOI] [PubMed] [Google Scholar]
- Imrich A., Taylor M., Kobzik L. Fluorescence-based microplate bioassay for tumor necrosis factor. J Immunol Methods. 1998 Mar 1;212(1):109–112. doi: 10.1016/s0022-1759(98)00002-7. [DOI] [PubMed] [Google Scholar]
- Korrick S. A., Neas L. M., Dockery D. W., Gold D. R., Allen G. A., Hill L. B., Kimball K. D., Rosner B. A., Speizer F. E. Effects of ozone and other pollutants on the pulmonary function of adult hikers. Environ Health Perspect. 1998 Feb;106(2):93–99. doi: 10.1289/ehp.9810693. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lewtas J. Complex mixtures of air pollutants: characterizing the cancer risk of polycyclic organic matter. Environ Health Perspect. 1993 Apr;100:211–218. doi: 10.1289/ehp.93100211. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li X., Youngblood G. L., Payne A. H., Hales D. B. Tumor necrosis factor-alpha inhibition of 17 alpha-hydroxylase/C17-20 lyase gene (Cyp17) expression. Endocrinology. 1995 Aug;136(8):3519–3526. doi: 10.1210/endo.136.8.7628389. [DOI] [PubMed] [Google Scholar]
- Long C. M., Suh H. H., Catalano P. J., Koutrakis P. Using time- and size-resolved particulate data to quantify indoor penetration and deposition behavior. Environ Sci Technol. 2001 May 15;35(10):2089–2099. doi: 10.1021/es001477d. [DOI] [PubMed] [Google Scholar]
- Löfroth G., Stensman C., Brandhorst-Satzkorn M. Indoor sources of mutagenic aerosol particulate matter: smoking, cooking and incense burning. Mutat Res. 1991 Sep;261(1):21–28. doi: 10.1016/0165-1218(91)90094-3. [DOI] [PubMed] [Google Scholar]
- Marple V. A., Rubow K. L., Turner W., Spengler J. D. Low flow rate sharp cut impactors for indoor air sampling: design and calibration. JAPCA. 1987 Nov;37(11):1303–1307. doi: 10.1080/08940630.1987.10466325. [DOI] [PubMed] [Google Scholar]
- Monn C., Becker S. Cytotoxicity and induction of proinflammatory cytokines from human monocytes exposed to fine (PM2.5) and coarse particles (PM10-2.5) in outdoor and indoor air. Toxicol Appl Pharmacol. 1999 Mar 15;155(3):245–252. doi: 10.1006/taap.1998.8591. [DOI] [PubMed] [Google Scholar]
- Morgan G., Corbett S., Wlodarczyk J. Air pollution and hospital admissions in Sydney, Australia, 1990 to 1994. Am J Public Health. 1998 Dec;88(12):1761–1766. doi: 10.2105/ajph.88.12.1761. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nardini B., Granella M., Clonfero E. Mutagens in indoor air particulate. Mutat Res. 1994 Sep;322(3):193–202. doi: 10.1016/0165-1218(94)90006-x. [DOI] [PubMed] [Google Scholar]
- Ning Y., Imrich A., Goldsmith C. A., Qin G., Kobzik L. Alveolar macrophage cytokine production in response to air particles in vitro: role of endotoxin. J Toxicol Environ Health A. 2000 Feb 11;59(3):165–180. doi: 10.1080/009841000156952. [DOI] [PubMed] [Google Scholar]
- Ozkaynak H., Xue J., Spengler J., Wallace L., Pellizzari E., Jenkins P. Personal exposure to airborne particles and metals: results from the Particle TEAM study in Riverside, California. J Expo Anal Environ Epidemiol. 1996 Jan-Mar;6(1):57–78. [PubMed] [Google Scholar]
- Peters A., Liu E., Verrier R. L., Schwartz J., Gold D. R., Mittleman M., Baliff J., Oh J. A., Allen G., Monahan K. Air pollution and incidence of cardiac arrhythmia. Epidemiology. 2000 Jan;11(1):11–17. doi: 10.1097/00001648-200001000-00005. [DOI] [PubMed] [Google Scholar]
- Wallace L. Indoor particles: a review. J Air Waste Manag Assoc. 1996 Feb;46(2):98–126. doi: 10.1080/10473289.1996.10467451. [DOI] [PubMed] [Google Scholar]
- Wilson W. E., Mage D. T., Grant L. D. Estimating separately personal exposure to ambient and nonambient particulate matter for epidemiology and risk assessment: why and how. J Air Waste Manag Assoc. 2000 Jul;50(7):1167–1183. doi: 10.1080/10473289.2000.10464164. [DOI] [PubMed] [Google Scholar]
- Wilson W. E., Suh H. H. Fine particles and coarse particles: concentration relationships relevant to epidemiologic studies. J Air Waste Manag Assoc. 1997 Dec;47(12):1238–1249. doi: 10.1080/10473289.1997.10464074. [DOI] [PubMed] [Google Scholar]
- Yang H. M., Ma J. Y., Castranova V., Ma J. K. Effects of diesel exhaust particles on the release of interleukin-1 and tumor necrosis factor-alpha from rat alveolar macrophages. Exp Lung Res. 1997 May-Jun;23(3):269–284. doi: 10.3109/01902149709087372. [DOI] [PubMed] [Google Scholar]