Abstract
Fiber size is an important factor in the tumorigenicity of various mineral fibers and asbestos fibers in animal experiments. We examined the time course of the ability to induce lucigenin-dependent chemiluminescence (CL) from human monocyte-derived macrophages exposed to Japan Fibrous Material standard reference samples (glass wool, rock wool, micro glass fiber, two types of refractory ceramic fiber, refractory mullite fiber, potassium titanium whisker, silicon carbide whisker, titanium oxide whisker, and wollastonite). We determined how fiber length or width might modify the response of cells. We found that the patterns of time-dependent increase of CL (sigmoid type) were similar for each sample except wollastonite. We observed a strong correlation between geometric-mean length and ability to induce CL in seven samples > 6 microm in length over the time course (largest r(2) = 0.9760). Although we also observed a close positive correlation between geometric-mean width and the ability to induce CL in eight samples < 1.8 microm in width at 15 min (r(2) = 0.8760), a sample of 2.4 microm in width had a low ability to induce CL. Moreover, the relationship between width and the rate of increase in ability to induce CL had a negative correlation at 30-60 min (largest r(2) = 0.7473). Our findings suggest that the release of superoxide from macrophages occurs nonspecifically for various types of mineral fibers depending on fiber length.
Full Text
The Full Text of this article is available as a PDF (558.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Archer V. E. Carcinogenicity of fibers and films: a theory. Med Hypotheses. 1979 Nov;5(11):1257–1262. doi: 10.1016/0306-9877(79)90008-2. [DOI] [PubMed] [Google Scholar]
- Brown D. M., Fisher C., Donaldson K. Free radical activity of synthetic vitreous fibers: iron chelation inhibits hydroxyl radical generation by refractory ceramic fiber. J Toxicol Environ Health A. 1998 Apr 10;53(7):545–561. doi: 10.1080/009841098159132. [DOI] [PubMed] [Google Scholar]
- Bunn W. B., 3rd, Bender J. R., Hesterberg T. W., Chase G. R., Konzen J. L. Recent studies of man-made vitreous fibers. Chronic animal inhalation studies. J Occup Med. 1993 Feb;35(2):101–113. doi: 10.1097/00043764-199302000-00009. [DOI] [PubMed] [Google Scholar]
- Böyum A. Isolation of mononuclear cells and granulocytes from human blood. Isolation of monuclear cells by one centrifugation, and of granulocytes by combining centrifugation and sedimentation at 1 g. Scand J Clin Lab Invest Suppl. 1968;97:77–89. [PubMed] [Google Scholar]
- Craighead J. E., Mossman B. T. The pathogenesis of asbestos-associated diseases. N Engl J Med. 1982 Jun 17;306(24):1446–1455. doi: 10.1056/NEJM198206173062403. [DOI] [PubMed] [Google Scholar]
- Davis J. M., Addison J., Bolton R. E., Donaldson K., Jones A. D., Smith T. The pathogenicity of long versus short fibre samples of amosite asbestos administered to rats by inhalation and intraperitoneal injection. Br J Exp Pathol. 1986 Jun;67(3):415–430. [PMC free article] [PubMed] [Google Scholar]
- Ellouk S. A., Jaurand M. C. Review of animal/in vitro data on biological effects of man-made fibers. Environ Health Perspect. 1994 Jun;102 (Suppl 2):47–61. doi: 10.1289/ehp.9410247. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goodglick L. A., Kane A. B. Cytotoxicity of long and short crocidolite asbestos fibers in vitro and in vivo. Cancer Res. 1990 Aug 15;50(16):5153–5163. [PubMed] [Google Scholar]
- Halliwell B., Gutteridge J. M. Oxygen free radicals and iron in relation to biology and medicine: some problems and concepts. Arch Biochem Biophys. 1986 May 1;246(2):501–514. doi: 10.1016/0003-9861(86)90305-x. [DOI] [PubMed] [Google Scholar]
- Halliwell B., Gutteridge J. M. Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J. 1984 Apr 1;219(1):1–14. doi: 10.1042/bj2190001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hansen K., Mossman B. T. Generation of superoxide (O2-.) from alveolar macrophages exposed to asbestiform and nonfibrous particles. Cancer Res. 1987 Mar 15;47(6):1681–1686. [PubMed] [Google Scholar]
- Hesterberg T. W., Axten C., McConnell E. E., Oberdörster G., Everitt J., Miiller W. C., Chevalier J., Chase G. R., Thevenaz P. Chronic inhalation study of fiber glass and amosite asbestos in hamsters: twelve-month preliminary results. Environ Health Perspect. 1997 Sep;105 (Suppl 5):1223–1229. doi: 10.1289/ehp.97105s51223. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hesterberg T. W., Chase G., Axten C., Miller W. C., Musselman R. P., Kamstrup O., Hadley J., Morscheidt C., Bernstein D. M., Thevenaz P. Biopersistence of synthetic vitreous fibers and amosite asbestos in the rat lung following inhalation. Toxicol Appl Pharmacol. 1998 Aug;151(2):262–275. doi: 10.1006/taap.1998.8472. [DOI] [PubMed] [Google Scholar]
- Hill I. M., Beswick P. H., Donaldson K. Differential release of superoxide anions by macrophages treated with long and short fibre amosite asbestos is a consequence of differential affinity for opsonin. Occup Environ Med. 1995 Feb;52(2):92–96. doi: 10.1136/oem.52.2.92. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kamp D. W., Graceffa P., Pryor W. A., Weitzman S. A. The role of free radicals in asbestos-induced diseases. Free Radic Biol Med. 1992;12(4):293–315. doi: 10.1016/0891-5849(92)90117-y. [DOI] [PubMed] [Google Scholar]
- Kohyama N., Tanaka I., Tomita M., Kudo M., Shinohara Y. Preparation and characteristics of standard reference samples of fibrous minerals for biological experiments. Ind Health. 1997 Jul;35(3):415–432. doi: 10.2486/indhealth.35.415. [DOI] [PubMed] [Google Scholar]
- Mossman B. T., Bignon J., Corn M., Seaton A., Gee J. B. Asbestos: scientific developments and implications for public policy. Science. 1990 Jan 19;247(4940):294–301. doi: 10.1126/science.2153315. [DOI] [PubMed] [Google Scholar]
- Mossman B. T., Marsh J. P., Shatos M. A., Doherty J., Gilbert R., Hill S. Implication of active oxygen species as second messengers of asbestos toxicity. Drug Chem Toxicol. 1987;10(1-2):157–180. doi: 10.3109/01480548709042587. [DOI] [PubMed] [Google Scholar]
- Mossman B. T., Sesko A. M. In vitro assays to predict the pathogenicity of mineral fibers. Toxicology. 1990 Jan-Feb;60(1-2):53–61. doi: 10.1016/0300-483x(90)90162-a. [DOI] [PubMed] [Google Scholar]
- Nyberg P., Klockars M. Measurement of reactive oxygen metabolites produced by human monocyte-derived macrophages exposed to mineral dusts. Int J Exp Pathol. 1990 Aug;71(4):537–544. [PMC free article] [PubMed] [Google Scholar]
- Ohyama M., Otake T., Morinaga K. The chemiluminescent response from human monocyte-derived macrophages exposed to various mineral fibers of different sizes. Ind Health. 2000 Jul;38(3):289–293. doi: 10.2486/indhealth.38.289. [DOI] [PubMed] [Google Scholar]
- Roller M., Pott F., Kamino K., Althoff G. H., Bellmann B. Results of current intraperitoneal carcinogenicity studies with mineral and vitreous fibres. Exp Toxicol Pathol. 1996 Jan;48(1):3–12. doi: 10.1016/S0940-2993(96)80084-4. [DOI] [PubMed] [Google Scholar]
- Ruotsalainen M., Hirvonen M. R., Luoto K., Savolainen K. M. Production of reactive oxygen species by man-made vitreous fibres in human polymorphonuclear leukocytes. Hum Exp Toxicol. 1999 Jun;18(6):354–362. doi: 10.1191/096032799678840228. [DOI] [PubMed] [Google Scholar]
- Stanton M. F., Layard M., Tegeris A., Miller E., May M., Morgan E., Smith A. Relation of particle dimension to carcinogenicity in amphibole asbestoses and other fibrous minerals. J Natl Cancer Inst. 1981 Nov;67(5):965–975. [PubMed] [Google Scholar]
- Stanton M. F., Laynard M., Tegeris A., Miller E., May M., Kent E. Carcinogenicity of fibrous glass: pleural response in the rat in relation to fiber dimension. J Natl Cancer Inst. 1977 Mar;58(3):587–603. doi: 10.1093/jnci/58.3.587. [DOI] [PubMed] [Google Scholar]
- Vallyathan V., Mega J. F., Shi X., Dalal N. S. Enhanced generation of free radicals from phagocytes induced by mineral dusts. Am J Respir Cell Mol Biol. 1992 Apr;6(4):404–413. doi: 10.1165/ajrcmb/6.4.404. [DOI] [PubMed] [Google Scholar]
- Weitzman S. A., Graceffa P. Asbestos catalyzes hydroxyl and superoxide radical generation from hydrogen peroxide. Arch Biochem Biophys. 1984 Jan;228(1):373–376. doi: 10.1016/0003-9861(84)90078-x. [DOI] [PubMed] [Google Scholar]
- Yamato H., Morimoto Y., Tsuda T., Ohgami A., Kohyama N., Tanaka I. Fiber numbers per unit weight of JFM standard reference samples determined with a scanning electron microscope. Japan Fibrous Material. Ind Health. 1998 Oct;36(4):384–387. doi: 10.2486/indhealth.36.384. [DOI] [PubMed] [Google Scholar]
