Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2001 Oct;109(10):1071–1078. doi: 10.1289/ehp.011091071

Agricultural pesticide use in California: pesticide prioritization, use densities, and population distributions for a childhood cancer study.

R B Gunier 1, M E Harnly 1, P Reynolds 1, A Hertz 1, J Von Behren 1
PMCID: PMC1242085  PMID: 11689348

Abstract

Several studies have suggested an association between childhood cancer and pesticide exposure. California leads the nation in agricultural pesticide use. A mandatory reporting system for all agricultural pesticide use in the state provides information on the active ingredient, amount used, and location. We calculated pesticide use density to quantify agricultural pesticide use in California block groups for a childhood cancer study. Pesticides with similar toxicologic properties (probable carcinogens, possible carcinogens, genotoxic compounds, and developmental or reproductive toxicants) were grouped together for this analysis. To prioritize pesticides, we weighted pesticide use by the carcinogenic and exposure potential of each compound. The top-ranking individual pesticides were propargite, methyl bromide, and trifluralin. We used a geographic information system to calculate pesticide use density in pounds per square mile of total land area for all United States census-block groups in the state. Most block groups (77%) averaged less than 1 pound per square mile of use for 1991-1994 for pesticides classified as probable human carcinogens. However, at the high end of use density (> 90th percentile), there were 493 block groups with more than 569 pounds per square mile. Approximately 170,000 children under 15 years of age were living in these block groups in 1990. The distribution of agricultural pesticide use and number of potentially exposed children suggests that pesticide use density would be of value for a study of childhood cancer.

Full Text

The Full Text of this article is available as a PDF (941.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barnard C., Daberkow S., Padgitt M., Smith M. E., Uri N. D. Alternative measures of pesticide use. Sci Total Environ. 1997 Sep 15;203(3):229–244. doi: 10.1016/s0048-9697(97)00151-4. [DOI] [PubMed] [Google Scholar]
  2. Bradman M. A., Harnly M. E., Draper W., Seidel S., Teran S., Wakeham D., Neutra R. Pesticide exposures to children from California's Central Valley: results of a pilot study. J Expo Anal Environ Epidemiol. 1997 Apr-Jun;7(2):217–234. [PubMed] [Google Scholar]
  3. Chester G., Ward R. J. Occupational exposure and drift hazard during aerial application of paraquat to cotton. Arch Environ Contam Toxicol. 1984 Sep;13(5):551–563. doi: 10.1007/BF01056333. [DOI] [PubMed] [Google Scholar]
  4. Cochran R. C., Formoli T. A., Pfeifer K. F., Aldous C. N. Characterization of risks associated with the use of molinate. Regul Toxicol Pharmacol. 1997 Apr;25(2):146–157. doi: 10.1006/rtph.1997.1082. [DOI] [PubMed] [Google Scholar]
  5. Cohen Hubal E. A., Sheldon L. S., Burke J. M., McCurdy T. R., Berry M. R., Rigas M. L., Zartarian V. G., Freeman N. C. Children's exposure assessment: a review of factors influencing Children's exposure, and the data available to characterize and assess that exposure. Environ Health Perspect. 2000 Jun;108(6):475–486. doi: 10.1289/ehp.108-1638158. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Daniels J. L., Olshan A. F., Savitz D. A. Pesticides and childhood cancers. Environ Health Perspect. 1997 Oct;105(10):1068–1077. doi: 10.1289/ehp.971051068. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fenske R. A., Kissel J. C., Lu C., Kalman D. A., Simcox N. J., Allen E. H., Keifer M. C. Biologically based pesticide dose estimates for children in an agricultural community. Environ Health Perspect. 2000 Jun;108(6):515–520. doi: 10.1289/ehp.00108515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kettles M. K., Browning S. R., Prince T. S., Horstman S. W. Triazine herbicide exposure and breast cancer incidence: an ecologic study of Kentucky counties. Environ Health Perspect. 1997 Nov;105(11):1222–1227. doi: 10.1289/ehp.971051222. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kukull W. A., Larson E. B., Bowen J. D., McCormick W. C., Teri L., Pfanschmidt M. L., Thompson J. D., O'Meara E. S., Brenner D. E., van Belle G. Solvent exposure as a risk factor for Alzheimer's disease: a case-control study. Am J Epidemiol. 1995 Jun 1;141(11):1059–1079. doi: 10.1093/oxfordjournals.aje.a117370. [DOI] [PubMed] [Google Scholar]
  10. Lewis R. G., Fortmann R. C., Camann D. E. Evaluation of methods for monitoring the potential exposure of small children to pesticides in the residential environment. Arch Environ Contam Toxicol. 1994 Jan;26(1):37–46. doi: 10.1007/BF00212792. [DOI] [PubMed] [Google Scholar]
  11. Loewenherz C., Fenske R. A., Simcox N. J., Bellamy G., Kalman D. Biological monitoring of organophosphorus pesticide exposure among children of agricultural workers in central Washington State. Environ Health Perspect. 1997 Dec;105(12):1344–1353. doi: 10.1289/ehp.971051344. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Mills P. K. Correlation analysis of pesticide use data and cancer incidence rates in California counties. Arch Environ Health. 1998 Nov-Dec;53(6):410–413. doi: 10.1080/00039899809605729. [DOI] [PubMed] [Google Scholar]
  13. Quackenboss J. J., Pellizzari E. D., Shubat P., Whitmore R. W., Adgate J. L., Thomas K. W., Freeman N. C., Stroebel C., Lioy P. J., Clayton A. C. Design strategy for assessing multi-pathway exposure for children: the Minnesota Children's Pesticide Exposure Study (MNCPES). J Expo Anal Environ Epidemiol. 2000 Mar-Apr;10(2):145–158. doi: 10.1038/sj.jea.7500080. [DOI] [PubMed] [Google Scholar]
  14. Rajur Sharanabasava B., Robles Jordi, Wiederholt Kristin, Kuimelis Robert G., McLaughlin Larry W. Hoechst 33258 Tethered by a Hexa(ethylene glycol) Linker to the 5'-Termini of Oligodeoxynucleotide 15-Mers: Duplex Stabilization and Fluorescence Properties. J Org Chem. 1997 Feb 7;62(3):523–529. doi: 10.1021/jo9618536. [DOI] [PubMed] [Google Scholar]
  15. Rall D. P. Can laboratory animal carcinogenicity studies predict cancer in exposed children? Environ Health Perspect. 1995 Sep;103 (Suppl 6):173–175. doi: 10.1289/ehp.95103s6173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Schreinemachers D. M., Creason J. P., Garry V. F. Cancer mortality in agricultural regions of Minnesota. Environ Health Perspect. 1999 Mar;107(3):205–211. doi: 10.1289/ehp.99107205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Simcox N. J., Fenske R. A., Wolz S. A., Lee I. C., Kalman D. A. Pesticides in household dust and soil: exposure pathways for children of agricultural families. Environ Health Perspect. 1995 Dec;103(12):1126–1134. doi: 10.1289/ehp.951031126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Ward M. H., Nuckols J. R., Weigel S. J., Maxwell S. K., Cantor K. P., Miller R. S. Identifying populations potentially exposed to agricultural pesticides using remote sensing and a Geographic Information System. Environ Health Perspect. 2000 Jan;108(1):5–12. doi: 10.1289/ehp.001085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Whitemore R. W., Immerman F. W., Camann D. E., Bond A. E., Lewis R. G., Schaum J. L. Non-occupational exposures to pesticides for residents of two U.S. cities. Arch Environ Contam Toxicol. 1994 Jan;26(1):47–59. doi: 10.1007/BF00212793. [DOI] [PubMed] [Google Scholar]
  20. Xiang H., Nuckols J. R., Stallones L. A geographic information assessment of birth weight and crop production patterns around mother's residence. Environ Res. 2000 Feb;82(2):160–167. doi: 10.1006/enrs.1999.4009. [DOI] [PubMed] [Google Scholar]
  21. Zahm S. H., Ward M. H. Pesticides and childhood cancer. Environ Health Perspect. 1998 Jun;106 (Suppl 3):893–908. doi: 10.1289/ehp.98106893. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Zartarian V. G., Ozkaynak H., Burke J. M., Zufall M. J., Rigas M. L., Furtaw E. J., Jr A modeling framework for estimating children's residential exposure and dose to chlorpyrifos via dermal residue contact and nondietary ingestion. Environ Health Perspect. 2000 Jun;108(6):505–514. doi: 10.1289/ehp.00108505. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES