Abstract
Recent animal studies suggest that nutritional repletion may improve function of liver allografts, and the authors have found that intraportal glucose infusion in pigs produces rapid and substantial hepatic glycogenation. A controlled prospective randomized study in 32 patients was done to determine glycogen content and degradation in human livers during transplantation, and the effect of intraportal glucose-insulin infusions during the donor operation on these variables and on outcome of transplantation. Peripheral blood glucose concentrations were "clamped" at 14 mmol/L during the glucose-insulin infusion. Liver biopsies were taken at various stages of the procedure. Liver glycogen decreased 2.0 +/- 1.2 g/100 g dry weight liver (mean +/- standard error of the mean) in controls, but increased 6.8 +/- 1.8 g/100 g dry weight in glucose-infused donors. In both groups there was glycogen degradation during periods of cold preservation, anoxic rewarming, and after reperfusion with portal blood. Degradation rates were greater in the glucose-infused group than in controls in all three periods (p less than 0.05). Despite wide variation in postoperative aspartate aminotransferase (AST) levels among recipients in both groups, the difference in peak postoperative AST levels approached significance (p = 0.06). In addition, peak AST levels were closely correlated to anoxic rewarming time in both groups, but the slope of the relationship was much lower (3834 versus 734, p less than 0.01) in the glucose-infused group. Thus at anoxic rewarming times over 90 minutes, glycogenation was protective of liver function. Peak postoperative AST was significantly correlated to glycogen degradation in the cold preservation and rewarming periods in the glucose-infused group only. Intraoperative glucose infusions in humans can reglycogenate the liver, increase glycogen degradation, and improve certain outcome measures in liver transplantation.
Full text
PDF











Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adkins B. A., Myers S. R., Hendrick G. K., Stevenson R. W., Williams P. E., Cherrington A. D. Importance of the route of intravenous glucose delivery to hepatic glucose balance in the conscious dog. J Clin Invest. 1987 Feb;79(2):557–565. doi: 10.1172/JCI112847. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Astarcioglu I., Adam R., Gigou M., Isaac J., Bismuth H. High levels of glycogen in the donor liver improve survival after liver transplantation in rats. Transplant Proc. 1991 Oct;23(5):2465–2466. [PubMed] [Google Scholar]
- BERNELLI-ZAZZERA A., GAJA G. SOME ASPECTS OF GLYCOGEN METABOLISM FOLLOWING REVERSIBLE OR IRREVERSIBLE LIVER ISCHEMIA. Exp Mol Pathol. 1964 Aug;17:351–368. doi: 10.1016/0014-4800(64)90007-3. [DOI] [PubMed] [Google Scholar]
- Belzer F. O., Southard J. H. Principles of solid-organ preservation by cold storage. Transplantation. 1988 Apr;45(4):673–676. doi: 10.1097/00007890-198804000-00001. [DOI] [PubMed] [Google Scholar]
- Boudjema K., Lindell S. L., Belzer F. O., Southard J. H. Effects of method of preservation on functions of livers from fed and fasted rabbits. Cryobiology. 1991 Jun;28(3):227–236. doi: 10.1016/0011-2240(91)90027-l. [DOI] [PubMed] [Google Scholar]
- Cisneros C., Guillén F., Gomez R., Gutierrez J., Vorwald P., Montero A., Moreno E. Analysis of warm ischemia time for prediction of primary nonfunction of the hepatic graft. Transplant Proc. 1991 Jun;23(3):1976–1976. [PubMed] [Google Scholar]
- Cosimi A. B. Update on liver transplantation. Transplant Proc. 1991 Aug;23(4):2083–2090. [PubMed] [Google Scholar]
- DAWKINS M. J., JUDAH J. D., REES K. R. Factors influencing the survival of liver cells during autolysis. J Pathol Bacteriol. 1959 Jan;77(1):257–275. doi: 10.1002/path.1700770125. [DOI] [PubMed] [Google Scholar]
- DeFronzo R. A., Tobin J. D., Andres R. Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am J Physiol. 1979 Sep;237(3):E214–E223. doi: 10.1152/ajpendo.1979.237.3.E214. [DOI] [PubMed] [Google Scholar]
- Francavilla A., Brown T. H., Fiore R., Cascardo S., Taylor P., Groth C. G. Preservation of organs for transplantation. Evidence of detrimental effect of rapid cooling. Eur Surg Res. 1973;5(5):384–389. doi: 10.1159/000127678. [DOI] [PubMed] [Google Scholar]
- Greig P. D., Forster J., Superina R. A., Strasberg S. M., Mohamed M., Blendis L. M., Taylor B. R., Levy G. A., Langer B. Donor-specific factors predict graft function following liver transplantation. Transplant Proc. 1990 Aug;22(4):2072–2073. [PubMed] [Google Scholar]
- Greig P. D., Woolf G. M., Sinclair S. B., Abecassis M., Strasberg S. M., Taylor B. R., Blendis L. M., Superina R. A., Glynn M. F., Langer B. Treatment of primary liver graft nonfunction with prostaglandin E1. Transplantation. 1989 Sep;48(3):447–453. doi: 10.1097/00007890-198909000-00020. [DOI] [PubMed] [Google Scholar]
- Hems D. A., Whitton P. D., Taylor E. A. Glycogen synthesis in the perfused liver of the starved rat. Biochem J. 1972 Sep;129(3):529–538. doi: 10.1042/bj1290529. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Howard T. K., Klintmalm G. B., Cofer J. B., Husberg B. S., Goldstein R. M., Gonwa T. A. The influence of preservation injury on rejection in the hepatic transplant recipient. Transplantation. 1990 Jan;49(1):103–107. doi: 10.1097/00007890-199001000-00023. [DOI] [PubMed] [Google Scholar]
- Iles R. A., Griffiths J. R., Stevens A. N., Gadian D. G., Porteous R. Effects of fructose on the energy metabolism and acid-base status of the perfused starved-rat liver. A 31phosphorus nuclear magnetic resonance study. Biochem J. 1980 Oct 15;192(1):191–202. doi: 10.1042/bj1920191. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ishida T., Chap Z., Chou J., Lewis R., Hartley C., Entman M., Field J. B. Differential effects of oral, peripheral intravenous, and intraportal glucose on hepatic glucose uptake and insulin and glucagon extraction in conscious dogs. J Clin Invest. 1983 Aug;72(2):590–601. doi: 10.1172/JCI111007. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Iu S., Harvey P. R., Makowka L., Petrunka C. N., Ilson R. G., Strasberg S. M. Markers of allograft viability in the rat. Relationship between transplantation viability and liver function in the isolated perfused liver. Transplantation. 1987 Oct;44(4):562–569. doi: 10.1097/00007890-198710000-00021. [DOI] [PubMed] [Google Scholar]
- Katz J., Golden S., Wals P. A. Glycogen synthesis by rat hepatocytes. Biochem J. 1979 May 15;180(2):389–402. doi: 10.1042/bj1800389. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lanir A., Jenkins R. L., Caldwell C., Lee R. G., Khettry U., Clouse M. E. Hepatic transplantation survival: correlation with adenine nucleotide level in donor liver. Hepatology. 1988 May-Jun;8(3):471–475. doi: 10.1002/hep.1840080306. [DOI] [PubMed] [Google Scholar]
- MASON E. E., LEE R. A., SMITH J., DIERKS C. A biochemical dissection of ischemic liver necrosis. Surgery. 1959 May;45(5):765–776. [PubMed] [Google Scholar]
- Morgan G. R., Sanabria J. R., Clavien P. A., Phillips M. J., Edwards C., Harvey P. R., Strasberg S. M. Correlation of donor nutritional status with sinusoidal lining cell viability and liver function in the rat. Transplantation. 1991 Jun;51(6):1176–1183. doi: 10.1097/00007890-199106000-00007. [DOI] [PubMed] [Google Scholar]
- Nishi T., Kido Y., Ogawa A., Furuya E., Mori T. Effect of fructose on glycogen synthesis in the perfused rat liver. Biochem Int. 1990;20(2):329–335. [PubMed] [Google Scholar]
- Oellerich M., Burdelski M., Ringe B., Lamesch P., Gubernatis G., Bunzendahl H., Pichlmayr R., Herrmann H. Lignocaine metabolite formation as a measure of pre-transplant liver function. Lancet. 1989 Mar 25;1(8639):640–642. doi: 10.1016/s0140-6736(89)92144-2. [DOI] [PubMed] [Google Scholar]
- Palombo J. D., Hirschberg Y., Pomposelli J. J., Blackburn G. L., Zeisel S. H., Bistrian B. R. Decreased loss of liver adenosine triphosphate during hypothermic preservation in rats pretreated with glucose: implications for organ donor management. Gastroenterology. 1988 Oct;95(4):1043–1049. doi: 10.1016/0016-5085(88)90181-3. [DOI] [PubMed] [Google Scholar]
- Pienaar B. H., Stapleton G. N., Bracher M., Lotz Z., Innes C. R., Fourie J., Hickman R. Six-hour porcine liver storage without flushing or perfusion. Transplantation. 1991 Jul;52(1):38–43. doi: 10.1097/00007890-199107000-00008. [DOI] [PubMed] [Google Scholar]
- Reikerås O., Nordstrand K., Henden T. Effects of fasting and glucose-insulin-potassium on glycogen contents in heart, skeletal muscle and liver. Scand J Clin Lab Invest. 1988 May;48(3):285–288. doi: 10.3109/00365518809167496. [DOI] [PubMed] [Google Scholar]
- Schroeder T. J., Gremse D. A., Mansour M. E., Theuerling A. W., Brunson M. E., Ryckman F. C., Suchy F. J., Penn I., Alexander J. W., Pesce A. J. Lidocaine metabolism as an index of liver function in hepatic transplant donors and recipients. Transplant Proc. 1989 Feb;21(1 Pt 2):2299–2301. [PubMed] [Google Scholar]
- Shulman G. I., Rossetti L. Influence of the route of glucose administration on hepatic glycogen repletion. Am J Physiol. 1989 Nov;257(5 Pt 1):E681–E685. doi: 10.1152/ajpendo.1989.257.5.E681. [DOI] [PubMed] [Google Scholar]
- Woods H. F., Alberti K. G. Dangers of intravenous fructose. Lancet. 1972 Dec 23;2(7791):1354–1357. doi: 10.1016/s0140-6736(72)92791-2. [DOI] [PubMed] [Google Scholar]


