Abstract
Successful genetic transduction of endothelial cells (EC) provides a theoretic means of increasing luminal secretion of tissue-type plasminogen activator (tPA) and lessening arterial and venous thrombotic processes. To identify the duration and number of retroviral exposures for an optimal tPA expression, enzymatically derived adult canine jugular venous EC were subjected to different exposure regimens using an amphotropic murine retroviral vector, MFG, containing the human tPA gene. Human tPA antigen secretion and its functional activity were determined at 2 days (subconfluent cells) and 14 days (confluent cells) after retroviral exposure. High-level secretion of human tPA was detected among transduced EC in all experimental groups. No secretion of human tPA occurred in control EC exposed to media alone. At 2 days after transduction, no significant differences in tPA secretion rates occurred among the different exposure regimens. At 14 days, the 12-hour X two-exposure group exhibited higher tPA secretion rates than all other exposure regimens (analysis of variance, p < 0.05). All exposure groups at 14 days exhibited significantly higher tPA secretion compared with those at 2 days (analysis of variance, p < 0.05). The presence of retroviral sequences in the genome of transduced EC was confirmed by Southern blot analysis. At 14 days, increased EC numbers were observed in vector-exposed wells compared with controls. Human tPA functional activity paralleled tPA antigen secretion. Genetically modified canine EC are capable of high levels of constitutive expression of human tPA after relatively short exposures to a retroviral vector containing the reporter gene. Increased cell number of tPA-transduced EC in culture suggests that tPA also may have other biologically important effects. These results support the efficacy of MFG-tPA gene transfer as a means of genetically modifying EC fibrinolytic activity and establishes the potential of this technology in vivo.
Full text
PDF






Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Capecchi M. R. High efficiency transformation by direct microinjection of DNA into cultured mammalian cells. Cell. 1980 Nov;22(2 Pt 2):479–488. doi: 10.1016/0092-8674(80)90358-x. [DOI] [PubMed] [Google Scholar]
- Danos O., Mulligan R. C. Safe and efficient generation of recombinant retroviruses with amphotropic and ecotropic host ranges. Proc Natl Acad Sci U S A. 1988 Sep;85(17):6460–6464. doi: 10.1073/pnas.85.17.6460. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dichek D. A., Neville R. F., Zwiebel J. A., Freeman S. M., Leon M. B., Anderson W. F. Seeding of intravascular stents with genetically engineered endothelial cells. Circulation. 1989 Nov;80(5):1347–1353. doi: 10.1161/01.cir.80.5.1347. [DOI] [PubMed] [Google Scholar]
- Dichek D. A., Nussbaum O., Degen S. J., Anderson W. F. Enhancement of the fibrinolytic activity of sheep endothelial cells by retroviral vector-mediated gene transfer. Blood. 1991 Feb 1;77(3):533–541. [PubMed] [Google Scholar]
- Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
- Ford J. W., Burkel W. E., Kahn R. H. Isolation of adult canine venous endothelium for tissue culture. In Vitro. 1981 Jan;17(1):44–50. doi: 10.1007/BF02618029. [DOI] [PubMed] [Google Scholar]
- Fraley R., Straubinger R. M., Rule G., Springer E. L., Papahadjopoulos D. Liposome-mediated delivery of deoxyribonucleic acid to cells: enhanced efficiency of delivery related to lipid composition and incubation conditions. Biochemistry. 1981 Nov 24;20(24):6978–6987. doi: 10.1021/bi00527a031. [DOI] [PubMed] [Google Scholar]
- Friedmann T. Progress toward human gene therapy. Science. 1989 Jun 16;244(4910):1275–1281. doi: 10.1126/science.2660259. [DOI] [PubMed] [Google Scholar]
- Hsu S. M., Raine L., Fanger H. Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures. J Histochem Cytochem. 1981 Apr;29(4):577–580. doi: 10.1177/29.4.6166661. [DOI] [PubMed] [Google Scholar]
- Kaneda Y., Iwai K., Uchida T. Increased expression of DNA cointroduced with nuclear protein in adult rat liver. Science. 1989 Jan 20;243(4889):375–378. doi: 10.1126/science.2911748. [DOI] [PubMed] [Google Scholar]
- Kooistra T., Sprengers E. D., van Hinsbergh V. W. Rapid inactivation of the plasminogen-activator inhibitor upon secretion from cultured human endothelial cells. Biochem J. 1986 Nov 1;239(3):497–503. doi: 10.1042/bj2390497. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miller D. G., Adam M. A., Miller A. D. Gene transfer by retrovirus vectors occurs only in cells that are actively replicating at the time of infection. Mol Cell Biol. 1990 Aug;10(8):4239–4242. doi: 10.1128/mcb.10.8.4239. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nabel E. G., Plautz G., Boyce F. M., Stanley J. C., Nabel G. J. Recombinant gene expression in vivo within endothelial cells of the arterial wall. Science. 1989 Jun 16;244(4910):1342–1344. doi: 10.1126/science.2499928. [DOI] [PubMed] [Google Scholar]
- Nabel E. G., Plautz G., Nabel G. J. Site-specific gene expression in vivo by direct gene transfer into the arterial wall. Science. 1990 Sep 14;249(4974):1285–1288. doi: 10.1126/science.2119055. [DOI] [PubMed] [Google Scholar]
- Risberg B., Eriksson E., Björk S., Hansson G. K. Immunohistochemical localization of plasminogen activators in human saphenous veins. Thromb Res. 1986 Feb 1;41(3):301–308. doi: 10.1016/0049-3848(86)90240-9. [DOI] [PubMed] [Google Scholar]
- Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]
- Wilson J. M., Birinyi L. K., Salomon R. N., Libby P., Callow A. D., Mulligan R. C. Implantation of vascular grafts lined with genetically modified endothelial cells. Science. 1989 Jun 16;244(4910):1344–1346. doi: 10.1126/science.2734614. [DOI] [PubMed] [Google Scholar]
- Wojta J., Hoover R. L., Daniel T. O. Vascular origin determines plasminogen activator expression in human endothelial cells. Renal endothelial cells produce large amounts of single chain urokinase type plasminogen activator. J Biol Chem. 1989 Feb 15;264(5):2846–2852. [PubMed] [Google Scholar]
- Yao S. N., Wilson J. M., Nabel E. G., Kurachi S., Hachiya H. L., Kurachi K. Expression of human factor IX in rat capillary endothelial cells: toward somatic gene therapy for hemophilia B. Proc Natl Acad Sci U S A. 1991 Sep 15;88(18):8101–8105. doi: 10.1073/pnas.88.18.8101. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zwiebel J. A., Freeman S. M., Kantoff P. W., Cornetta K., Ryan U. S., Anderson W. F. High-level recombinant gene expression in rabbit endothelial cells transduced by retroviral vectors. Science. 1989 Jan 13;243(4888):220–222. doi: 10.1126/science.2911735. [DOI] [PubMed] [Google Scholar]


