Simple Summary
Episiotomy is a surgical perineal incision enlarging the vaginal opening during labor to prevent severe perineal lacerations. We previously reviewed the characteristics of primary carcinomas arising from the episiotomy scar. In the present systematic literature review, we analyzed the clinical–pathological features of patients with secondary carcinomas metastasizing to the episiotomy scar site.
Keywords: episiotomy, pregnancy, squamous cell carcinoma, adenocarcinoma, metastasis, cervical cancer, cervix, vulva
Abstract
Background/Objectives: Rarely, primary (PriCs) or metastatic (metECs) carcinomas occur in the episiotomy site. Methods: A systematic literature review of metECs was carried out. We reviewed the PRISMA guidelines and the Scopus, Pubmed, and Web of Science databases. Results: We found 21 carcinomas; all of them were cervical carcinomas (11 squamous, SCC; 6 adenocarcinomas; 3 adenosquamous; 1 SCC or adenocarcinoma) diagnosed during pregnancy (38%) or 0.25–8 months postpartum (57%). SCCs were larger (mean size: 4.8 cm). At presentation, only two cases were pN+, and no distant metastases were found, excluding four episiotomy metastases (one anticipating the cervical cancer diagnosis); the remaining episiotomy metastases (mean size: 3 cm; one multifocal) were found at follow-up (these were first metastases in 86% of cases). The time range from the episiotomy/last delivery to first episiotomy metastasis was 1–66 (mean, 12.3) months. Treatment was variable: hysterectomy (71%) ± lymphadenectomy (67%) and/or adjuvant treatment (19%); chemoradiation/radiotherapy alone (24%). A total of 90% of cases recurred after 18 days to 66 months (mean, 12 months). At last follow-up, ten patients (48%) were disease-free after 12–120 (mean, 63.5) months, two patients (10%) were alive with disease, and nine (42%) patients died of disease after 6–36 (mean, 12.5) months (including two never-cleared/progressing cases). Conclusions: PriCs and metECs are rare. Iatrogenic/obstetric implantation or vascular dissemination of cervical cancer at the site of episiotomy may occur. For episiotomy lesions, accurate gynecological/perineal examination is required, and biopsy can be considered. Larger studies are required in order to determine treatment guidelines. Compared to PriCs, metECs occurred in younger (premenopausal) patients, were not associated with endometriosis, and demonstrated slightly smaller size and shorter mean time from episiotomy to episiotomy metastases, with a higher likelihood of a less favorable prognosis.
1. Introduction
Episiotomy is a perineal surgical incision expanding the vagina during the second stage of labor or hysterectomy of a large uterus in order to avoid severe (third–fourth degree) perineal lacerations [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33]. Indeed, about 90% of pregnancies are complicated by perineal traumas, sometimes causing short- and/or long-term morbidities with medicolegal implications and impact on healthcare costs (pelvic floor disorders, dyspareunia, persistent pain, obstetrical anal sphincter injury with incontinence, a negative influence on mother’s ability to care for children) [34,35,36,37,38,39,40,41]. Primiparity, advanced maternal age, Asian ethnicity, operative vaginal birth, prolonged second stage of labor, maternal birth position, fetal malposition (occiput posterior), increased fetal birthweight, type of laceration, repair techniques and materials, and birth assistant’s poor expertise all influence the degree/extent of peritoneal traumas (first degree: only perineal skin injury; second degree: involvement of perineal muscles; third degree: anal sphincter muscle complex injury; fourth degree: extension to rectal mucosa) [34,35,36,37,38,39,40,41,42,43,44]. Episiotomy is widely used, although with wide variation between countries (9.7–100%). However, according to the American College of Obstetricians and Gynecologists (ACOG) and the World Health Organization (WHO), evidence-based data seem insufficient to recommend episiotomy in routine practice; some types of episiotomy may cause adverse consequences such as insufficient prevention or increase in obstetric sphincter ani muscle injuries and hemorrhage [1,2,3,4,5,45,46,47,48,49,50]. Clinical judgment is the best guide; mediolateral episiotomy may have a lower risk of anal sphincter injury (compared to midline episiotomy) when associated with forceps or vacuum delivery but may increase the chances of long-term perineal pain and dyspareunia [45,46,47,48,49,50].
Hormonal and immunologic changes in pregnancy may promote tumorigenesis [51,52,53,54,55]. We previously reviewed the primary malignant carcinomas arising from the episiotomy site (PriCs) [6,7,8,9,10,11,12,13,14,15,16,17,18,56]. We have now performed a systematic literature review to describe the clinical–pathologic features of secondary malignant tumors relapsing/metastasizing to the episiotomy scar site (metECs).
2. Materials and Methods
To identify metECs, we conducted a retrospective observational systematic literature review according to the PRISMA guidelines (http://www.prisma-statement.org/; accessed on 4 June 2025) and the PICO process (population: human patients with metECs; intervention: any; comparison: none; outcomes: clinical outcomes (status at last follow-up, and survival and recurrence rates)). We searched for (carcinoma OR carcinomas OR adenocarcinoma OR adenocarcinomas OR cancer OR sarcoma OR sarcomas OR melanoma OR melanomas OR “gestational trophoblastic” OR choriocarcinoma OR choriocarcinomas OR mole OR molar OR “epithelioid trophoblastic” OR “placental site tumor” OR “placental site tumors” OR “placental-site tumor” OR “placental-site tumors” OR “placental site trophoblastic tumor” OR “placental site trophoblastic tumors” OR “placental-site trophoblastic tumor” OR “placental-site trophoblastic tumors” OR “placental site nodule” OR “placental site nodules” OR “placental-site nodule” OR “placental-site nodules” OR “placental site trophoblastic nodule” OR “placental site trophoblastic nodules” OR “placental-site trophoblastic nodule” OR “placental-site trophoblastic nodules”) AND (episiotomies OR episiotomy) in Pubmed (all fields, 112 results; https://pubmed.ncbi.nlm.nih.gov, accessed on 4 June 2025), Scopus (title/abstract/keywords, 148 results; https://www.scopus.com/home.uri, accessed on 4 June 2025), and Web of Science (all fields, 89 results; https://www.webofknowledge.com/, accessed on 4 June 2025) databases. No limitations were set. The bibliographic research ended on 4 June 2025. We applied the following:
Eligibility/inclusion criteria: studies describing metECs.
Exclusion criteria: primary episiotomy tumors; tumors not metastasizing to the episiotomy site; unclear diagnosis; results not analyzable (too aggregated or scant data).
Two authors independently read the titles and abstracts of all the retrieved results (n = 235 after removal of duplicates). Applying the eligibility/inclusion and exclusion criteria, 18 articles were eligible and retrieved as full texts; their reference lists were screened for additional relevant papers. Sixteen articles were finally included after excluding two papers that did not describe additional cases (Figure 1) [17,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33].
Figure 1.
PRISMA flowchart of our systematic literature review.
Data collection was study- and case-related. We used the R-4.1.3 software (R Foundation, Vienna, Austria) for statistical analysis. Continuous variables were analyzed by ranges and mean values, and their distribution was analyzed using the Shapiro test. Categorical variables were analyzed as frequencies and percentages. Kruskal–Wallis and Fisher’s exact tests were used to assess associations between clinical–pathologic parameters for continuous and categorical variables, respectively. The overall (OS) and recurrence free survivals (RFSs) were counted as the time from surgery to patient’s death/last follow-up (OS) and to recurrence/last follow-up (RFS), respectively. Survival analysis was performed applying by log-rank test. Associations were statistically significant for p-values < 0.05.
3. Results
3.1. Case Series: Diagnosis
We identified 21 metECs, all primarily arising from the uterine cervix [17,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33]. Most studies reported only case reports or small series (<5 patients) [17,29,32]. Unlike PriCs [18], most metECs were diagnosed in the United States (n = 10) [21,24,25,26,29,31,32], followed by Europe (n = 8; five in the United Kingdom [17,29,33], one in Portugal [20], one in Poland [27], and one in Denmark [22]) and Asia (n = 3; Iran [19], Turkey [23], and Lebanon [30]).
The 21 metECs included eleven squamous cell carcinomas (SCCs) [17,23,25,27,29,30,31,33] (one grade 1 [27], one grade 2 with minimal stromal invasion [25], eight grade 3 [17,19,20,21,22,23,24,26,28,29,30,32,33], one unclear grade [31]), six endocervical adenocarcinomas (ADCs) [17,19,24,28,32] (one grade 1 [24], two grade 2 [19,32], three grade 3 [28,32]), three adenosquamous carcinomas (ASCs) [20,21,22] (one grade 2 [21], two grade 3 [20,23], including a glassy cell carcinoma [20]), and a case with an unreported histotype (SCCs vs. ADCs) [26] (Table 1).
Table 1.
Carcinomas recurring in the episiotomy scar site: age, history, and diagnosis.
| Case | Age | Parity | Pap Smear | Histological Diagnosis |
|---|---|---|---|---|
| 1 [19] | 38 | G1P1 | AGC, HPV16+ test (5 mo a.d.:) | ADC, Gr2 (usual type) |
| 2 [20] | 34 | G1P1 | ADC (2 mo a.d.) | ASC, Gr3 (glassy cell carcinoma) |
| 3 [21] | 35 | G3P3A3 | NR | ASC, Gr2 |
| 4 [22] | 35 | G2P1 | autolyzed atypical epithelial cells (no malignant cells) (10 mo pre) |
ASC, Gr3 |
| 5 [23] | 36 | G4P2A2 | NR | SCC, Gr3 |
| 6 [24] | 32 | G3, P2002 | AGC (7 mo pre); normal (4 mo pre) | ADC, Gr1 (villoglandular) (§, *) |
| 7 [25] | 35 | multiparous | normal (early pregnancy, 35 weeks b.p.) | SCC, Gr2 (§) |
| 8 [26] | NR | NR | NR (SCC or ADC) | |
| 9 [27] | 26 | G3P2 | normal (early pregnancy and at 25 GW) | SCC, Gr1 |
| 10 [28] | 29 | G1 | moderate dyskeratosis (17 GW) (previous year: normal) |
ADC, Gr2-3 (§, *, °) |
| 11 [29] (case 1) | 37 | NR | H-SIL (pre) | SCC, Gr3 |
| 12 [29] (case 2) | 31 | NR | NR | SCC, Gr3 |
| 13 [29] (case 3) | 21 | NR | NR | SCC, Gr3 |
| 14 [29] (case 4) | 34 | NR | NR | SCC, Gr3 |
| 15 [30] | 32 | G6P5A1 | NR | SCC, Gr3 |
| 16 [17] (case 2) | 29 | G2P2 | class IV (6 weeks a.d.) | SCC, Gr3 |
| 17 [17] (case 3) | 30 | G4P2 | normal (pre and 9 weeks a.d.) | ADC, Gr3 |
| 18 [31] | 24 | P2002 | normal (7 mo pre) | SCC |
| 19 [32] (case 1) | 32 | G4P2A2 | normal (pre) | ADC, Gr3 |
| 20 [32] (case 2) | 32 | G4P1A2 | normal (pre) | ADC, Gr2 (*) |
| 21 [33] | 33 | G1P1 | occasional malignant cells (7 mo a.d.:) | SCC, Gr3 (°) |
(§): microinvasive; (*): in situ adenocarcinoma was also evident; (°): H-SIL was also evident. a.d.: after delivery; ADC: adenocarcinoma; AGC: atypical glandular cell; ASC: adenosquamous carcinoma; Gr: grade; mo: months; GW: gestational week; H-SIL: high-grade squamous cell lesion; NR: not reported; pre: prenatal; SCC: squamous cell carcinoma.
Two ADCs showed histological patterns of human papillomavirus (HPV)-related E- ADC (one usual type, HPV16+ [19], one villoglandular [24]); the remaining cases seemed to be more HPV-associated and/or showed HPV-related precursors (in situ adenocarcinoma, AIS; high-grade intraepithelial lesion/cervical intraepithelial neoplasia, H-SIL/CIN3) [24,28,32,33]. Immunohistochemistry was performed on only one ADC (EMA+, CK7+, CDX-2+ weak, CK20-) [19]. Molecular analysis was not performed in any case.
3.2. Cervical Cancer Presentation
Patients were all premenopausal (age range: 21–38 years; mean age: 31.75 years; median age: 32 years) [17,19,20,21,22,23,24,25,27,28,29,30,31,32,33] and mostly multiparous (n = 12, 75%) [17,21,22,23,24,25,27,28,30,31,32,33]. The mean (34.7 years) and median age (35 years) were slightly higher for ASCs (range, 34–35 years) [20,21,22] than ADCs (range, 29–38; mean, 32.2; median, 32 years) [17,19,24,28,32] or SCCs (range, 21–37; mean, 30.7; median, 32 years) [17,23,25,27,29,30,31,33], but few cases were described (Table 1).
All the cases of cervical cancer (CC) seemed to be pregnancy-associated according to some authors’ criteria (diagnosis during pregnancy or within a year postpartum) [17,19,20,21,22,23,24,25,26,27,28,29,30,31,33,57,58,59]. CCs were histologically diagnosed at the time of delivery in eight (38%) cases [21,22,24,29,31,32] or 0.25–8 (mean, 3) months postpartum in 12/21 (57%) cases [17,19,20,23,25,27,28,29,30,32,33] (one unclear [26]), but the CCs clearly presented during pregnancy in 4/20 cases [19,24,29,32], and onset during pregnancy was usually not excluded (Table 2).
Table 2.
Carcinomas recurring in the episiotomy scar site: time sequence.
| Case | CCD | ETD | CCD-ETD (mo) | CCD-PT (mo) | Delivery-PT (mo) | Last Delivery-ETD (mo) |
|---|---|---|---|---|---|---|
| 1 [19] | PD (§) | SR | 5 | NR | NR | 12 |
| 2 [20] | PD | P ($), DR | 2 | 2 | 4 | 4 |
| 3 [21] | DD | SR | NR | NR | NR | 5 |
| 4 [22] | DD (%) | DR | NR | 0.75 | 0.75 | 1.25 |
| 5 [23] | PD (°) | P (°) | 8 | NR | NR | 8 |
| 6 [24] | DD (*) | SR | NR | 1 | 1 | 45 |
| 7 [25] | PD (*) | SR | 0.25 | NR | NR | 66 |
| 8 [26] | NR | SR | NR | NR | NR | 5 |
| 9 [27] | PD | P (&) | 2 (&) | NR | 2 | 1 |
| 10 [28] | PD (*) | SR | 3 | NR | 3 | 4.25 |
| 11 [29] | DD | SR | NR | NR | 0.5–2 | 2.25 |
| 12 [29] | DD (*) | SR | NR | NR | 0.5–2 | 3 |
| 13 [29] | DD | SR | NR | NR | 0.5–2 | 24 |
| 14 [29] | PD | SR | 1.25 | NR | 0.5–2 | 2.25 |
| 15 [30] | PD | SR | 2 | NR | NR | 5 |
| 16 [17] | PD | SR | 1.5 | 4.5 | 6 | 7.5 |
| 17 [17] | PD (°) | P (°) | 2.25 | 1 | 3.75 | 6.25 |
| 18 [31] | DD | SR | NR | 11 days | 11 days | 1.25 |
| 19 [32] | PD | SR | 3 | NR | NR | NR |
| 20 [32] | DD (*) | DR | NR | NR | NR | NR |
| 21 [33] | PD | SR | 7 | 3 | 10 | 30 |
(§): endocervical polyp found during last vaginal delivery (no histology); ($): 1st episiotomy lesion during surgery for cervical cancer; (%): tumor piece delivered with infant; (*): presentation during pregnancy [32], 3 months before [24], at 35th [25], or at 36th gestational week [29], while 1 case showed abnormal Pap smear and colposcopy during pregnancy [28]; (&): episiotomy tumor diagnosed before cervical cancer; (°): synchronous diagnosis of cervical cancer and episiotomy tumors. CCD: cervical cancer histological diagnosis; DD: diagnosis at delivery; DR: double recurrence; ETD: episiotomy tumor diagnosis; mo: months; NR: not reported; P: at presentation; PD: postpartum diagnosis; PT: primary treatment.
Data about Pap smears were available for 14 patients (Table 1) [17,19,20,22,24,25,27,28,29,31,32,33]. Six (43%) Pap tests were positive, including three SCCs [17,29,33], two ADCs [19,24], and one ASC [20]. A total of 4/6 (67%) smears were performed 1.5–7 (mean, 3.9) months postpartum [17,19,20,33], while in two cases, the cytological diagnosis was achieved prenatally [24,29]. Two (14%) additional prenatal Pap smears showed atypical findings insufficient for a dysplastic or neoplastic diagnosis [22,28].
Other diagnostic procedures included one dilation and curettage [19], twelve biopsies [17,20,23,25,28,29,30,31,32,33], three excisions/polypectomies [17,22,24], and two cone biopsies [28,33].
CCs usually presented as exophytic [20,22,23,27,30], cauliflower-like [33], mass [31], pedunculated/raised/polypoid [17,19,24,25,27,33], and eroded/bleeding/ulcerated lesions [27,32,33]. The tumor involved the anterior (four cases) [22,24,28,33], antero-inferior (one case) [19], or posterior cervix (three cases) [17,31,32], completely replacing the exocervix [25] or also involving the vaginal posterior upper third [17] in one case each.
The CC size range was 0.5–7 cm (mean, 2.9; median, 2 cm) (n = 12) [17,19,20,22,23,24,25,28,31,32]. The mean (4.8 cm) and median (5 cm) sizes were larger for SCCs (range, 2–7 cm) [17,23,25,31] than ADCs (mean/median: 1.3 cm; range: 0.5–1.8 cm) [17,19,24,28,32], but few data were available. The information regarding only two ASCs was reported (3 and 5 cm, respectively) [20,22] (Table 3).
Table 3.
Carcinomas recurring in the episiotomy scar site: clinical and follow-up data.
| Case | CC Size (cm) | Episiotomy Tumor Size (cm) | FIGO Stage | Primary Treatment | Recurrence | Follow-Up (mo) |
|---|---|---|---|---|---|---|
| 1 [19] | 1.7 | 2.5 | 1b1 | RH + BS + PELD(bi) | Episiotomy/perineum/vagina (right posterior), near external anal sphincter/puborectalis muscles (7 mo) | NED, 55 |
| 2 [20] | 3 | P: 5; R1: 5.5; R2: 9.8 |
3a/4 ($) | TAH + ENE + PELD(bi) | (1) Episiotomy/perineum (imaging re-evaluation after surgery); (2) large right inguinal LNs, vulva/perivulvar soft tissue (positive LN-FNAC, 2 mo later) | DOD, 9 |
| 3 [21] | NR | NR | 1b | RH + RT | Episiotomy/perineum (5 mo) | NED, 120 |
| 4 [22] | 5 | R1: 6; R2: NR |
1b3 | Excision (CC) + TAH + PELD(bi) + ChT/RT | (1) Episiotomy and near OEU (18 days); (2) episiotomy and between OEU and clitoris, bilateral inguinal LNs, widespread intra-abdominal, sigma (obstruction, sigmoidostomy) (3.25 mo later) | DOD, 8 |
| 5 [23] | 6 | P: 4 | 3a/4 ($) | ChT(&)/RT | no | NED, 12 |
| 6 [24] | 3 (*) | 2 | 1a1 | Polipectomy; TAH + PELD/PALD | (1) Episiotomy/perineum/left hemipelvis (positive FNAC) (44 mo); (2) left obturator LN (3 mo later) | NED, 48 |
| 7 [25] | 4 (*) | 5 | 1b (probable) |
RH + PELD/PALD | Episiotomy (midline)/rectovaginal septum (66 mo) | NED, 120 |
| 8 [26] | NR | NR | 2° | RT | Episiotomy (5 mo) | DOD, >5 |
| 9 [27] | NR | P: 4 | 3a/4 ($) | RT/BT, ChT (°, &) | Peri | DOD, 12 |
| 10 [28] | 0.5 (*) | 1.5 | 1a1 | CB; TAH + PELD | (1) Episiotomy (6 weeks); (2) bilateral inguinal LNs, para-aortic LNs, liver, left lung base (2 mo later) | DOD, 16 |
| 11 [29] | NR | NR | 1b/4b ($) | RH + PELD(bi) | Episiotomy (9 weeks) | DOD, 6 |
| 12 [29] | NR | NR | 1b | RH + PELD(bi) (°) | Episiotomy (24 mo) | NED, 36 |
| 13 [29] | NR | NR | 3c1 | RH + PELD(bi) | Episiotomy (3 mo) | DOD, 36 |
| 14 [29] | NR | NR | 3c1 | RH + PELD(bi) | Episiotomy, pelvis (1 mo) | DOD, 6 |
| 15 [30] | NR | 4 | 3b | RT + BT | Episiotomy (3 mo) | DOD, 7 |
| 16 [17] | 7 | P: 0.5 | 3a/4 ($) | VP + ENE + ChT (&) + RT + BT | No | AWD, NR |
| 17 [17] | 2 | 0.5 | 1b1 | TAH + BSO + PELD(bi) (°) | Episiotomy (3 mo) | NED, 120 |
| 18 [31] | 2 | 4 | 1b1 | RH + PELD(bi) | Episiotomy/posterior fourchette (1 mo) | NED, 42 |
| 19 [32] | 1 | 1 | 1b1 | RH + BSO + PELD | Episiotomy | NED, 60 |
| 20 [32] | 1 | R1: 1; R2: 0.7 |
1b1 | RH + PELD | (1) Episiotomy/lower rectovaginal septum (11 mo); (2) Episiotomy/perineum, pelvis, inguinal LNs (6 weeks later) | NED, 22 |
| 21 [33] | NR | 4 | 1b | CB; RT/BT | Episiotomy/perirectal fat above the anorectal junction (20 mo) | AWD, 22 |
(*): polyp of 3 cm but tumor of 1.8 cm (invasion: 2 mm) [24]; minimal/2 mm stromal invasion [25,28]. (°): different first management (initial misdiagnosis: inflammation/benign): incision + antibiotics [27]; follow-up (9 months) [29]; podophyllin [17]. ($): unclear stage due to episiotomy [17,20,23,27] or maybe pulmonary [29] metastases at presentation. (&): notes for chemotherapy: cisplatinum, methotrexate, leucovirin, bleomycin (6 courses) (severe acute toxicity: stomatitis, alopecia, leukopenia) [27]; cisplatinum, methotrexate, bleomycin (3 courses) [17]; cisplatin [23]. Notes for RT/BT: cobalt, 50 Gy, whole pelvis, antero-posterior fields, midline block after 38 Gy [21]; RT (midplane 22 Gy in 10 fractions, 5 fractions/week, 2 anteroposterior–posteroanterior parallel opposing fields, 18 × 22 cm, perineum, bilateral inguinal areas) + BT (cesium, 3 uterovaginal insertions: 20 Gy in Manchester point A each; 1 cylindrical vaginal applicator: 30 Gy at 1 cm deep) [27]; external RT (5000 cGy) + BT (3500 mg-hr radium) [30]; 5 intracavitary courses, 15 cm2 field, 5 weeks [33]; BT (cesium) [17]. AWD: alive with disease; bi: bilateral; BS: bilateral salpingectomy; BSO: bilateral salpingo-oophorectomy; BT: brachytherapy; CB: cone biopsy; CC: cervical cancer; ChT: chemotherapy; DOD: dead of disease; ENE: episiotomy nodule excision; FNAC: fine-needle aspiration cytology; LN: lymph node; mo: months; NED: no evidence of disease; NR: not reported; OEU: orificium externum uerthrae; P: at presentation; PALD: para-aortic lymphadenectomy; PELD: pelvic lymphadenectomy; R1: 1st recurrence; R2: 2nd recurrence; RH: radical hysterectomy; RT: radiotherapy; TAH: total abdominal hysterectomy; VP: vaginal polypectomy.
Bloody vaginal discharge/spotting (six cases) [17,19,23,24,27,30] sometimes also occurred in a post-coital setting (three cases) [17,23,30]. Three patients complained of dyspareunia and/or pelvic/flank/perineal pain [23,30,33]. Symptoms lasted 1.5–24 (mean, 9) months [17,19,23,30]. Three patients were asymptomatic [17,22,28] (Table 3). Serum tumor markers levels were unavailable. Imaging data were too scant; computed tomography scans seemed to find the episiotomy metastasis in 1/5 cases [17,22,23,25,27].
When reported, all the patients delivered through their vagina [17,19,20,21,22,23,24,25,27,28,29,30,31,32,33]; no cesarean sections were clearly reported. Data on the local conditions at the time of admission for delivery were scant. Excluding CC presentation, other complications included: one postpartum hemorrhage due to transection of polypoid ADC during episiotomy [24]; one delivery of a piece of tumor with the infant [22]; one isthmo-cervical insufficiency at the 25th gestational week, preterm rupture of membranes and delivery at 32 gestational weeks, rupture of the cervix during labor, and prolonged blood-like vaginal discharge during postpartum [27]. When reported, all the babies were healthy [22,24,25,27,28,33], and episiotomy was midline (n = 7, 33%) [20,24,25,30,31,32] (one second degree [24]) or mediolateral (n = 2, 10%) [22,23]. Episiotomy, episiorrhaphy, excochleation of the uterus, and suturing of the cervix were performed in one case [27]. Kielland’s forceps were used in one case [33].
3.3. Tumor Stage and Primary Treatment
As to the FIGO stage classification [60,61], two cases were stage IA1 [24,28], nine were IB (three were not otherwise specified [21,29,33], five were IB1 [17,19,31,32], one was IB3 [22]), one was IIA [26], one was IIIB [30], and two were IIIC1 (pN+) [29]. In the other cases, the stage was unclear, including four cases with episiotomy metastases at presentation (IIIa vs. IV) [17,20,23,27] (Table 3). The parametria and vaginal posterior upper third were invaded in 4/21 (19%, reaching the pelvic side wall in one case) [17,23,26,30] and 1 case [17], respectively.
Lymph node enlargement was identified in 1/5 (25%) cases [17,19,20,27,30], lymphovascular invasion in 2/6 (33%) pN0/pNx primary hysterectomy specimens [19,20,22,24,25,32]. Perineural invasion was absent in 3/3 cases [19,20,24].
Extra-episiotomy distant metastases were not clearly reported at presentation, except possibly for a case with unclear timing of lung metastases (presentation vs. recurrence) [29].
The time from CC diagnosis to primary treatment ranged from 11 days to 4.5 months (mean, 1.8 months) [17,31,33]. The time from delivery to primary treatment ranged from 11 days to 6 months (mean, 3.3 months) [17,20,22,24,27,28,31,33] (Table 2).
Radical/total abdominal hysterectomy was performed in 15 (71%) patients [17,19,20,21,22,24,25,28,29,31,32], with additional bilateral salpingo-oophorectomy (2 cases) [17,32], salpingectomy (1 case) [19], pelvic (14 cases, 67%) [17,19,20,22,24,25,28,29,31,32] or pelvic/para-aortic lymphadenectomy (2 cases) (Table 3) [24,25]. The surgical margins were free of tumor in six cases [17,19,20,22,25,31] and positive for AIS/CIN3 in one cone biopsy [28] or SCC in another case [33], but there was no residual disease in the hysterectomy specimen [28] or after radiotherapy (RT) [33], respectively. Adjuvant treatment was administered to four (19%) women, including chemoradiation (two cases) [17,22] or RT (two cases) [21,33], both with [22,33] or without brachytherapy (BT) [17,21]. Five (24%) patients underwent exclusive chemoradiation (two cases) [23,27] or RT (three cases) [26,30,33]. Globally, BT was added to external RT in four (19%) cases [17,27,30,33].
3.4. Episiotomy Metastases, Tumor Recurrences, and Follow-Up
In four (19%) cases, the episiotomy metastases were found at presentation, synchronously with (three cases) [17,20,23] or 1 month before (one case) [27] the CC presentation. Surgical excision of the nodules was performed in 2/4 (50%) cases with or without ChT/RT/BT [17,20], while in the remaining cases, chemoradiation (±BT) was administered without surgery [23,27]. Two of four cases did not recur [17,23], one relapsed once at the perineum [20], and one recurred twice at the episiotomy/perineal/vulvar site [27]. In the remaining 17 (81%) patients, the episiotomy metastases presented as a single (n = 15, 71%) [17,19,21,24,25,26,28,29,30,31,32,33] or double recurrence (n = 2, 10%) [22,32] during follow-up [17,19,20,21,22,24,25,28,29,30,31,32,33]. Globally, 19/21 (90%) cases recurred [17,19,20,21,22,24,25,26,27,28,29,30,31,32,33], and episiotomy recurrences were found in 18 (86%) patients [17,19,20,21,22,24,25,27,28,29,30,31,32,33].
Excluding cases never cleared from disease (unstoppable disease progression) [20,27], the time to first recurrence ranged from 18 days to 66 months (mean, 12 months) (Table 2 and Table 3) [17,19,20,21,22,24,25,26,27,28,29,30,31,32,33]. The mean time from episiotomy or last delivery to the first episiotomy metastasis was 12 months, although the range was wider (1–66 months) [17,19,20,21,22,23,24,25,26,27,28,29,30,31,33,57,58,59]. The time from the first to second recurrence ranged from 6 weeks to 3.25 months (mean, 2.4 months) [20,22,24,28,32]. Data of recurrences after the second relapse were unclear.
The first metastatic site at presentation/recurrence was local (episiotomy and nearby tissues) in most patients (n = 18, 86%) [17,19,20,21,22,23,24,25,26,27,28,30,31,32,33] or regional (pelvic lymph nodes) in two (10%) cases [29], while in one case, it was unclear if lung metastases occurred at presentation or recurrence [29]. Non-local (regional/distant) metastases were more frequently subsequently involved at follow-up (n = 5, 24%) (four inguinal lymph nodes, 19% [20,22,28,32]; one left obturator lymph node [24]; one para-aortic lymph nodes, liver, left lung base) [28]; one widespread intra-abdominal and sigmoid colon [22].
The episiotomy metastases were described as swelling [28], mass/lump [19,29,31,33], granulation tissue-like [31], nodular [17,20,22,25], cystic [32], nodular/cystic, discharging clear mucinous material [24], polypoid [32], ulcerative [23,27], firm/hard [20,24,30], and/or necrotic [30]. Pain (three cases) [19,22,27], vaginal/pelvic discharge (three cases) [22,24,30], and dyspareunia (one case) [30] were rarely reported. The mean episiotomy tumor size was 3 cm (range, 0.5–6.0 cm) (Table 4) [17,19,20,22,23,24,25,27,28,30,31,32,33]. In one case, two synchronous episiotomy lesions were identified [22]. The following sites were involved: vulva/perivulvar soft tissues [20,22,30,31], vagina (lower third) [19,23,27], perineum [19,20,21,24,27,32], pelvis [24,29,32], recto-vaginal septum [25,32], perirectal fat/external anal sphincter [19,33].
Table 4.
Treatment of recurrence, response to therapy, and side effects.
| Case | Treament of Recurrence/PD (°) | Response to Therapy/Side Effects |
|---|---|---|
| 1 [19] | RT, ChT (CP 40 mg/m2, weekly), BT | CR |
| 2 [20] | (1) ChT (CP 65 mg/5 cycles), RT; (2) ChT (CP/TPC) | (1, 2) PD |
| 3 [21] | Pelvic LN dissection (no tumor), RT, ChT (5-FU/MMC, 5 cycles), WE (no tumor) | CR. Post-ChT/RT side effects (<3 mo): dysparenunia, postcoital bleeding, rectoaginal fibrosis, proctitis, persistent perineal ulcer/necrosis, persistent tenesmus/rectal bleeding (*); after 10 years, recurrent perineal cellulitis and obstructive uropathy (bladder dysfunction, bilateral hydronephrosis, hydroureters, marked postvoid residual volumes) |
| 4 [22] | (1) WE (20 days after hysterectomy; unclear surgical margins), RT, ChT (CP 50 mg/kg, 1.25 mo), BT; (2) palliative ChT, sigmoidostomy | PR |
| 6 [24] | (1) RT (2) bi-SLN, bilateral groin LN dissection, partial radical vulvectomy (advancement of rhomboid flap) (free surgical margins) | CR |
| 7 [25] | Excision (surgical margins: NR), RT, BT | CR. Post-RT vaginal stenosis |
| 8 [26] | RT | NR |
| 9 [27] | RT | PD. Good analgetic effect. Post-RT mucositis. Post-ChT stomatitis, leukopenia, alopecia |
| 10 [28] | (1) WE (lymphovascular invasion close to free margins), BT; (2) ChT (bleomycin, ifosfamide, CP, 4 courses), RT | (1) CR; (2) PD. Post-ChT peripheral vasculitis, lethargy, dyspnea |
| 11 [29] | ChT (MTX/VBL/A/CP) | NR |
| 12 [29] | Follow-up (9 mo), ChT (MTX/VBL/A/CP), WE, RT | NR |
| 13 [29] | RT, exenteration | NR |
| 14 [29] | WE, RT | NR |
| 15 [30] | ChT (CP/5-FU/A, 5 cycles), RT | PR |
| 17 [17] | WE (unclear margins), RT, BT, WE (after 10 years, resection at the same site for suspected recurrence, but no residual tumor) | CR |
| 18 [31] | WE (unclear margins), RT, BT (§) | CR. Post-RT chronic ulcer (§), rectal stricture |
| 19 [32] | Excision (rectovaginal septum nodule), RT, BT | CR. Post-RT vaginal stenosis (vaginoplasty and split-thickness skin graft) |
| 20 [32] | (1) WE (free margins); (2) excision (episiotomy nodules), RT | CR |
| 21 [33] | Incomplete excision; abdomino-perineal (rectal)/posterolateral vaginal wall/episiotomy residual tumor resection (extraperitoneal end colostomy in left iliac fossa) (surgical margins status: unclear, probably free) | PR |
Notes for RT/BT: Case 1: RT (external; pelvic primary lesion, cervical bed, obturator, internal/external iliac, presacral, common iliac, aortic bifurcation LNs; 50.4 Gy, 28 fractions) + BT (5 interstitial plastic catheters in vaginal wall, 21 Gy, 7 fractions, 2 fractions/day, 6 h interval; cobalt-60 high dose rate). Case 2: RT (whole pelvis, 24 Gy; perineum, 45 Gy). Case 3: RT (45 Gy, small anteroposterior photon fields inferior to the area demarcated by her prior treatment tattoos and fibrosis; 16.2 Gy then delivered using en face technique for perineal residual disease, total dose of 61.2 Gy). Case 4: RT (50/45 Gy, 25 doses). Case 6: RT (oppositional anterior–posterior portals, external iliac, lower internal iliac, and inguinal LNs; 1.8 Gy in 28 fractions, total dose of 50.4 Gy; 18 MV photons). Case 7: RT (45 Gy total dose; external beam RT (pelvis)) + BT (20 Gy high-dose-rate intracavitary vaginal boost, 4 doses of 5 Gy each). Case 9: palliative RT (14 Gy, 7 fractions, 2 oblique pelvic fields). Case 10: (1) BT (iridium wire implants), (2) palliative RT (inguinal area). Case 15: RT (2000 cGy external radiation to implantation site). Case 17: RT (external beam, perineal boost, Cobalt-60) + BT (radium, Delclos cylinders). Case 18: RT (whole pelvis, 4500 cGy, including perineal field in 25 fractions over 50 days) + BT (iridium192 implant, 1880 cGy to tumor volume, total minimum dose: 6380 cGy). Case 19: RT (5500 rad, 6 weeks; vulvar falloff whole-pelvic field, antero-posterior, and perineal port) + BT (vaginal cylinder radium, 2500 rad surface dose to upper vagina). Case 20: RT to pelvis, vulvar falloff, inguinal/pelvic LNs, 5500 rad. (°): Cases 5 and 16 did not recur, achieving CR [23] and PR [17], respectively. (*): treatment: sigmoid colectomy and diverting ileostomy. (§): wide resection of perineal ulcer and left gracilis musculocutaneous flap to reconstruct the perineal body (no residual tumor). 5-FU: 5-fluorouracil; A: adriamycin; bi-SLN: bilateral sentinel lymph nodes; BT: brachytherapy; ChT: chemotherapy; CP: cisplatin; CR: complete response; FNAC: fine-needle aspiration cytology; LN: lymph node; mo: months; MMC: mitomycin; MTX: metothrexate; NR: not reported; PD: progression of disease; PR: partial response; RT: radiotherapy; TPC: topotecan; VBL: vinblastine; WE: wide local excision.
In six cases, the episiotomy lesion was misdiagnosed as a benign condition (one inflammation [19], three abscesses [27,29], two epithelial inclusion cysts [29,32]), usually causing diagnostic/treatment delay (range: 2–9 months; mean, 6 months) [27,29,32]; indeed, 3/6 patients first underwent medical treatment or follow-up before diagnostic biopsies [17,27,29].
Diagnostic procedures for recurrences included not only incisional tumor and/or lymph node biopsies but also fine-needle aspiration cytology (FNAC); FNACs were positive in 1/2 (50%) of the episiotomy tumors [24,32] (negative case: granulation tissue and benign columnar cells, epithelial inclusion cyst) [32] and in 2/3 (67%) of inguinal lymph nodes [20,27,28].
In terms of the treatment of recurrences, surgery was carried on in 12/19 (63%) cases [17,21,22,25,28,29,31,32,33] as the exclusive treatment (two alone, 11%) [32,33], after RT (one case, 5%) [29], or followed by RT and/or BT (six cases, 31%) [17,25,28,29,31,32] or chemoradiation/BT (one case, 5%) [22]; different schedules were also reported (two cases, 11%) (Table 4) [21,29].
The histopathological exam of the episiotomy nodules (either at presentation or at recurrence) showed disease-free surgical margins after treatment in seven cases [17,20,21,24,28,31,32] (in one case, lymphovascular invasion was close to the surgical margins) [28]; data were unclear in the remaining cases undergoing excision.
A total of 7/19 (7%) patients were treated with exclusive chemoradiation (three cases) [19,20,30], RT (three cases) [24,26,27], or chemotherapy (ChT) (one case) [29]. Globally, ChT was administered in eight (38%) cases [19,20,21,22,28,29,30]; RT in 15 (79%) cases (total dose: 14–69 Gy, mean, 43 Gy; 7–28 fractions, mean, 23) [17,19,20,21,22,24,25,26,27,29,30,31,32], typically irradiating the whole pelvis/perineum, sometimes extended to the lomboaortic [19] or inguinal lymph nodes [24]; and BT was administered in seven (37%) cases (total dose: 20–63.8 Gy, mean, 32.5 Gy) [17,19,22,25,28,31,32].
The five (24%) patients with details about the second recurrence were treated by surgery alone (one case) [24], exclusive ChT (one case) [20], ChT + surgery (one case) [22], chemoradiation (one case) [28], or surgery + RT (one case) [32].
The best response to therapy was complete in ten (47%) cases [17,19,21,23,24,25,28,31,32], partial in four (19% of cases [17,22,30,33]), or unknown in five (24%) cases [26,29], while there was no response with disease progression (PD) in two (10%) cases [20,27].
Side effects of recurrence treatment (six cases, 32%) were described after chemoradiation (two cases) [21,27], RT (three cases) [25,31,32], or ChT (one case) [28], typically being local/pelvic (five cases) [21,25,27,31,32] and requiring additional surgery in three cases [21,31,32]; more systemic toxicity was found in two patients [27,28] (Table 4).
Follow-up data (Table 3) were available for 21 patients (range, 6–120; mean, 40 months) [17,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33]. Ten patients (48%) were disease-free 12–120 (mean 63.5) months after diagnosis [17,19,21,23,24,25,29,31,32], two (10%) were alive with disease at the last clinical exam [17,33], and nine (42%) were dead of disease 6–36 (mean, 12.5) months after diagnosis [20,22,26,27,28,29,30].
3.5. Statistical Analysis
Mean age, tumor histological grade, CC size, parametrial involvement, FIGO stage, pN stage, CC presentation during pregnancy vs. postpartum, presence/absence of episiotomy metastasis at presentation or recurrence (globally, and single vs. double recurrence), time from delivery to episiotomy tumor, type of treatment of primary tumor and recurrences (surgery, lymphadenectomy, RT, BT, ChT, and combinations of such treatments), and best response to therapy were analyzed to search for potential associations with histotype (SCC, ADC, ASC), OS, and RFS.
As expected, a statistical difference was found among different tumor stages (p = 0.025). The mean CC size was significantly smaller (p = 0.019) for ADCs (1.3 cm) [17,19,24,28,32] than ASCs (4 cm) [20,22] or SCCs (4.8 cm) [17,23,25,31], but data were based on just a few cases. No statistical significance was identified (p < 0.05) for all the other analyzed variables due to the scant data and low number of reported cases.
4. Discussion
4.1. Cervical Cancer and Pregnancy: Overview and Risk Factors
We found only 21 metECs [17,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33] and 13 PriCs [6,7,8,9,10,11,12,13,14,15,16,17,18,56]; non-carcinomatous malignancies (melanomas, sarcomas, or trophoblastic tumors) arising from other gynecological or extragynecological sites were not identified in both groups [56,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78]. All metECs arose from the uterine cervix and seemed pregnancy-related [17,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33]. CC is the fourth most common female cancer and leading cause of death in low-income countries particularly (SEER data: 13,820 new cases and 4360 new deaths in 2024; 5-year OS: 67–77%) [79,80,81,82,83,84].
Different tumors have been variably associated with pregnancy (breast, gynecological, salivary gland, adrenal, germ cell, lymphomas, melanoma, etc.); for breast cancer, pregnancy is either a risk factor (even 5 years postpartum; hormone receptor-negative cases; age > 35 years) or protective event (early pregnancies, age < 25 years) [22,23,24,25,26,52,57,58,59,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187]. After breast cancer, CC is also the most frequent pregnancy-associated carcinoma (0.1–12:10,000 pregnancies; 0.05–3% of pregnant/postpartum women) among gynecologic cancers (72%); its incidence varies as to: age; socioeconomic conditions; patients’ choices; type of medical care, prenatal testing, and screening during pregnancy; and inclusion of cases diagnosed during pregnancy and postpartum [57,58,59,85,86,87,88,89,90,91,92,93,94,95,96,185,186,187,188,189,190,191].
CCs diagnosed several months after delivery may have a weaker link to pregnancy, while most (80%) CCs diagnosed during pregnancy seemed to be at the early stage, allowing gestation continuation and/or fertility-sparing approaches with higher chances of complete remission [85,87,88,89,90,91,92,192,193,194,195]. Moreover, CCs at the early stage may be underdiagnosed in pregnancy, as vaginal bleeding/discharge is also due to non-oncologic complications, and colposcopic abnormalities can be difficult to detect due to increased mucus production, cervical hyperemia, gland prominence, and columnar epithelium eversion [196,197,198,199,200,201,202,203,204]; most (57%) CCs were diagnosed postpartum (even after episiotomy metastasis), although a clinical lesion and/or an abnormal Pap smear were sometimes found during gestation. In any case, large series of pregnant CC patients were lacking; pregnant and non-pregnant cases showed no prognostic difference in most studies if compared as age- and stage-matched groups. However, some CC series diagnosed during late pregnancy or postpartum showed worse prognosis and recurrence risk, while the prognostic difference between vaginal and cesarean delivery is controversial [26,29,57,58,59,85,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219].
Risk factors for CC include HPV and other sexually transmitted infections, age at first intercourse, number of sexual partners, smoking, multiparity, and immunodepression; the role of obesity is unclear, with less compliance to screening, impact on pregnancy outcomes, more comorbities/postoperative complications, and difficulty managing anesthesia and surgery but a possible protective effect against chemoradiation [220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237]. Our series showed scant data.
HPV infection (LSIL) is more frequent in young adults (80% at the third decade), pregnant women (>30%), and multiparous women, while high viral loads seem associated with negative pregnancy outcomes; most (90%) LSILs regress within 1 year or postpartum (>80%) due to immune system restoration, hormonal decrease, and vaginal delivery (60–66% vs. 12% of cesarean sections), which causes cervical trauma/inflammation, repair, and/or transient ischemia [80,210,223,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264]. Globally, 10% of LSILs progress to HSIL, which can either regress to normal/LSIL (30–50%; especially CIN2, depending on age, size, and HPV type) or progress to cancer (0.5–1% cases per year). HSIL is diagnosed in ~1% of pregnant patients and persists/progresses postpartum in 2–8% of cases (Figure 2) [80,210,223,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264].
Figure 2.
HPV/L-SIL progression to H-SIL/carcinoma.
Almost 90–95% CCs and precursors are HPV-related. In situ hybridization (using probes labeled with radioisotopes or chemically reactive ligands highlighted by autoradiography, fluorescence, or color reaction) or molecular analysis (such as polymerase chain reaction analysis/genotyping assays) could be performed on tissue or liquid biopsies to detect HPV infection and identify the HPV subtype/risk category. Low-risk HPV types (such as 6, 11, 42, 43, and 44) are typical of low-risk SIL (L-SIL) and only occasionally found in CC, while high-risk types (such as 16, 18, 31, 33, 34, 35, 39, 45, 51, 52, 56, 58, 59, 66, 68, and 70) are more typical of H-SIL/CC; intermediate risk HPV types also exist [265,266].
p16 (not tested in our cases) is an immunohistochemical surrogate for HPV (tested in only one metEC) but it can be also overexpressed in HPV-independent gynecological or extragynecological cancers (such as high-grade serous, urothelial carcinomas, etc.) [51,80,184,238,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310]. A new histological pattern-based prognostic classification of HPV-related cervical ADCs was recently proposed (unavailable data in our series) [80,311,312,313,314,315]; HPV-independent ADCs (mesonephric, gastrointestinal-type, etc.) [51,80,184,267,268,269,270,271,272,273,274,275,276,277,278] are rarer and aggressive (not found in our series).
4.2. Cervical Cancer and Pregnancy: Possible Pathogenic Factors
Immunodepression (oncologic or transplanted patients, HIV+, autoimmune diseases, or immunosuppressive drugs) promotes HPV and other infections, precancerous lesions, and solid and hematologic neoplasms; the hormonal and immunologic changes in pregnancy may also favor the genesis and progression of different tumors, sometimes expressing hormone receptors or human chorionic gonadotropin (hCG) and stimulated by sex hormones and growth factors (Figure 3) [22,23,24,25,26,51,52,53,54,55,57,58,59,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,254,255,256,257,264,316,317,318,319,320,321,322,323,324,325,326,327,328,329,330,331,332,333,334,335,336,337,338].
Figure 3.
Factors and co-factors involved in tumorigenesis.
Indeed, pregnancy-associated transient immune suppression/modulation allows tolerance to the fetus but reduces immune control against infections favoring HPV DNA integration and CC carcinogenesis and progression; fetomaternal microchimerism can also modulate the risk for maternal cancer [80,206,240,241,242,243,244,245,246,264,339,340,341,342].
In pregnancy, hormones, cytokines, and other factors alter the cervical immune microenvironment; for example, TGF-β reduces the maturation/recruitment of cervical dendritic antigen-presenting cells. Moreover, increased estrogen and progesterone levels decrease GM-CSF expression, promote proliferation and differentiation of the cervical epithelium, and induce cervical hypertrophy/congestion with persistent external exposure of the cervical transformation zone and susceptibility of metaplastic cervical epithelium to HPV (also due to pregnancy-related vaginal flora imbalance due to a humidified microenvironment); they may enhance viral DNA transcription, persistence/replication, and integration in the host genome, with risk for carcinogenesis [59,85,86,87,88,89,90,91,92,93,94,95,96,138,181,182,183,184,205,264,316,317,318,319,320,321,322,323,324,325,326]
hCG (mainly produced by the syncytiotrophoblast) seems positively correlated with HPV infection; it interacts with hCG/LH receptor (expressed by endothelial cells) and induces VEGF expression in macrophages, causing a neoangiogenic effect [343,344,345,346,347,348,349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365,366,367,368,369,370,371,372,373]. Neoangiogenesis, increased permeability, and vasodilation in the female genital tract promote the development of the placenta and proper fetomaternal circulation (otherwise dysregulated in gestational diabetes mellitus, preeclampsia, fetal growth restriction, or vascular anomalies such as hemangiomas or arteriovenous malformations); these changes may favor CC vascular dissemination, especially after vaginal delivery [9,10,11,43,192,205,264,374,375,376,377,378,379,380,381,382,383,384,385,386,387,388]. The physiological pregnancy-associated remodeling of uterine cervix and fetal membranes due to an increased size of the fetus and uterus can be due to increased matrix metalloproteinases (MMPs) activity, not necessarily linked to neoangiogenesis [389,390,391,392]. However, MMPs overexpression causes loss of cellular adhesion, extracellular matrix remodeling, and neoangiogenesis in cancer models, promoting epithelial–mesenchymal transition, tumor cell proliferation, infiltration/progression, and vascular dissemination; it is a poor prognostic factor in CC [207,208,393,394,395,396,397,398,399,400,401,402,403,404]. The relationship and effects of pregnancy, CC and MMP activity should be further investigated.
4.3. Episiotomy Metastases: Overview, Dissemination Pathways and Prognosis
The vagina is preferentially contaminated by bleeding/shedding of CC or endometrial cancers, but lower vaginal, vulvar, and perineal metastases are unusual (Figure 4) [17,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,405,406,407,408,409,410,411,412,413,414,415,416,417,418,419,420,421,422,423,424,425,426,427,428,429].
Figure 4.
Potential pathways of CC dissemination to the episiotomy.
Skin metastasis are very rare in CCs (0.01–2%), typically at advanced stage (5%), rarely at stage I–III (0.8–1.2%); about 5% stage I–II CCs may recur in the vaginal vault while perineal metastases imply a 40% mortality [318,430,431,432,433,434,435,436,437,438].
Assigning the proper stage to episiotomy metastases from CCs could be challenging; it is unclear if the prognosis could be more similar to a stage IIIA (extending to the lower vaginal third) or IV disease (direct spread beyond the true pelvis/distant metastasis) [60,61,439]. First, data about metECs are scant and the exact metastatic site is mostly unclear (internal lower vagina vs. external vulva/perineum).
Second, episiotomy metastases are usually the first metastatic site and some CCs recurred there a couple of times before further dissemination. Episiotomy metastases may even anticipate the CC detection or be identified at presentation (4/21 cases) [17,20,23,27], not necessarily implying an already widespread disease; however, recurrence and progression are currently unpredictable (evident in 2/4 cases, 50%). In the literature, about 11–20% of CCs were pN+ (FIGO stage IIIC, 34% 5-year OS) [60,61,82,83,438,439,440,441,442,443]; similar rates may have been reported in pregnant patients, but few cases were described [80,83,84,90,444,445,446,447,448]. Regional lymph node metastases were evident in 2 metECs at presentation, while clear non-episiotomy distant metastases were not reported. Globally, most (90%) metECs recurred (mean time, 12 months) but almost the same percentages of patients were disease-free (48%) or died of disease [17,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33].
Third, episiotomy metastases due to implant of tumor fragments detached during spontaneous vaginal delivery or iatrogenic (obstetrical or surgical) manipulation may have different prognosis and dissemination potential compared to CCs reaching episiotomy through surgical incisions/needle tracts or widespread lymphovascular dissemination; pneumoperitoneum may also alter the peritoneal surfaces favoring cancer cell adherence, but data are limited [405,406,431,449,450,451,452,453]. Vaginal delivery may not have a significant prognostic impact on asymptomatic, untreated, microscopic CCs/precursors, but it may be complicated by bleeding, sepsis, cervical laceration, dystocia, obstructed labor, and/or CC fragmentation and implant on other sites (especially if wounded, like episiotomy) or lymphovascular dissemination [206,405,448,449,450]. So, cesarean sections are recommended for large/advanced CCs, although this procedure, as for endometriosis, cannot also prevent dissemination though abdominal incisions to groin lymph nodes or other sites [55,454,455,456,457,458,459]. Large/advanced CCs can obstruct the deep lymphatics, shunting the flow to skin lymphatic vessels; the altered flow may promote lymphovascular dissemination to unusual sites. Extensive radical pelvic surgery or RT enhance lymphatic stasis favoring retrograde spread of neoplastic emboli to vulva [405,407,439,448,449,450,451,460,461,462,463,464,465].
Wound metastases were previously reported also in other cancers (endometrium, breast, gastrointestinal tract) [31,407,408,409,410,411,466,467,468,469,470,471,472,473,474,475,476]. Acute inflammation first responds to surgery, attracting immune cells to the wound field and promoting healing by secretion of cytokines and of growth and angiogenic factors and activating sympathetic nervous signaling. Subsequent immunosuppression may favor residual cancer cells’ growth and migration. Episiotomy wound inflammation is usually transient and local, sometimes becoming chronic/persistent, especially in cases of autoimmune disease, endometriosis, or poor healing (potentially favored by HPV infection); rare complications include fistulae (absent in our series) [412,413,414,415,416]. Inflammation may also clinically mask an underlying tumor.
4.4. Episiotomy Metastases: Differential Diagnoses
In some cases, misdiagnosis delayed treatment. The clinical–pathologic differential diagnoses of episiotomy nodules/ulcerated lesions include vulvo–vaginal–perineal tumors (benign or malignant primaries, or metastases) and other benign conditions like endometriosis, granulomas, sarcoidosis, granulation tissue, inflammation, or sexually-transmitted genital infections (syphilis, chancroid, lymphogranuloma venerum, HSV, EBV, etc.); in particular, infections should be considered in order to avoid fetal/pregnancy complications (pregnancy loss, preterm delivery/rupture of membranes) [6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,56,476,477,478,479,480,481,482,483,484,485,486,487,488,489,490,491,492,493,494,495,496,497,498,499,500,501,502,503,504,505,506,507,508,509,510,511,512,513,514,515,516,517,518,519,520,521,522,523]. EBV (sometimes detectable in the cervix, vagina, urethra, and anus in non-sexually active women as well) may be reactivated in pregnancy, rarely causing vulvar/vaginal ulcers. Some upper aerodigestive or hematologic tumors are EBV-related, while EBV was exceptionally associated with CC/vulvar carcinomas; EBV was not tested in metECs [524,525,526,527,528,529,530,531,532,533,534,535,536,537,538,539,540,541,542,543,544].
Frozen sections (not performed in metECs) help surgeons to obtain provisional diagnoses but are time-consuming for pathologists, implying costs, risk of small specimens’ exhaustion, and freezing histological artifacts interfering with histological interpretation; they should be performed only if their result alters the ongoing surgery [545,546].
Episiotomy nodule biopsies can be helpful. Many gynecological and extragynecological carcinomas (gastrointestinal, genitourinary, breast, etc.) may exceptionally metastasize to uncommon sites such as the vulva, mimicking a primary tumor; accurate clinical–radiological exams are fundamental to identify and stage the primary tumor [482,483,484,485,486,487,488,489,547].
Table 5 summarizes the main features of PriCs and metECs.
Table 5.
Carcinomas located at the episiotomy site: PriCs vs. metECs.
| PriCs (n = 13 Cases) | metECs (n = 21 Cases) | |
|---|---|---|
| Histotype | 2 (15%) SCC 1 (~8%) ACCBG 8 (62%) CCC 1 (~8%) EC 1 (~8%) SC (*) |
21 (100%) SCC |
| Mean age (years) | 50 (range: 31–70) | 32 (range: 21–38) |
| Multiparity | 6 (46%) | 12 (75%) |
| Premenopausal | 5 (39%) | 21 (100%) |
| Peri-postmenopausal | 5 (61%) | 0 (0%) |
| Mean size (cm) | 4.6 (range: 1–10) | 3 (range: 0.5–6) |
| Endometriosis | 8 (62%) | 0 (0%) |
| HPV infection status | NR | 1 (5%) HPV + 20 (95%) NR (probably HPV-related) |
| Mean time from episiotomy to first episiotomy tumor (months) | 21 (range: 3–30) | 12 (range: 12–792) |
| Lymph node metastases | 3 (23%) pN+, 4 (31%) pN0 | 2 pN+, 6 pN0/pNx |
| Distant metastases | 0 (0%) | Extra-episiotomy distant metastases were not clearly reported at presentation, maybe except for a case with unclear timing of lung metastases (presentation vs. recurrence) |
| Available follow-up data (months) | 13 (100%) (range: 5–30; mean, 12) | 21 (100%) (range, 6–120; mean, 40) |
| Recurrence rate | 3 (23%) | 19 (90%) |
| Time to recurrence | 2 PD, 1 recurrence after 6 months | 18 days to 66 months (mean, 12 months |
| Status at last follow-up (months) | 11 (85%) NED (ERH: 5–15; mean, 7.8; EIC: 11–13; mean, 12) 2 (15%) DOD (1 CCC, 1 EC) (12–30) |
9 (42%) DOD (6–36; mean, 12.5) 10 (48%) NED (12–120; mean, 63.5) 2 (10%) AWD |
(*): diagnosed as a SC but probably representing a CCC or a EC. ACCBG: adenoid cystic carcinoma of Bartholin’s gland; AWD: alive with disease; CCC: clear cell carcinoma; DOD: dead of disease; EC: endometrioid carcinoma; EIC: endometriosis-independent carcinoma; ERH: endometriosis-related carcinoma; NED: no evidence of disease; NR: not reported; PD: progression of disease; PriCs: primary carcinomas of the episiotomy site; SC: serous carcinoma; SCC: squamous cell carcinoma.
As to the CC epidemiology, metEC patients were younger than PriC patients (32 vs. 50–53 years) and all premenopausal (typical CC onset: 35–45 years), while most (61%) PriCs were postmenopausal.
PriCs showed more frequent association with endometriosis (0% of metECs), slightly larger mean size (4.6 vs. 3 cm; range, 1–10 vs. 0.5–6.0 cm), longer mean time from episiotomy to first episiotomy tumor (21 vs. 12 months; range, 3–30 vs. 1–66 years), lower nodal (3/13 cases, 23%) or distant metastases (0%) rates at presentation, and a higher likelihood of more favorable prognosis; indeed, only three (23%) PriCs recurred and 2/3 (15%) of cases progressed and died of disease (vs. 42% of metECs) [6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,56]. Most metEC (75%) and endometriosis-independent PriC patients (75%) were multiparous, while 60% of endometriosis-related PriC cases were primiparous [6,7,8,9,10,11,12,13,14,15,16,17,18,56,57,58,59,205,239,315].
The reported PriC histotypes (clear cell, endometrioid, adenoid cystic carcinomas) were usually different from metECs; moreover, clear cell and endometrioid carcinomas more typically occur in the endometrium or ovaries. Other rare gynecological carcinomas (intestinal-type, neuroendocrine, mesonephric, etc.) were not identified in both groups [6,7,8,9,10,11,12,13,14,15,16,17,18,56,548,549,550,551]. Conversely, SCCs at episiotomy sites could be either PriCs or metECs [16,17]; the histopathological and immunohistochemical exams could not be helpful for this differential diagnosis, except, perhaps, in a case where an in situ component is found, favoring a diagnosis of a primary lesion. Unfortunately, HPV infection could be found either in cervical, vulvar, or extragynecological carcinomas (such as urothelial carcinomas, etc.) [265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,321,322,323,324,325,326,327,328,329,330,331,332,333,334,335,336,337,338,339,340,341,342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365,366,367,368,369,370,371,372,373,374,375,376,377,378,379,380,381,382,383,384,385,386,387,388,389,390,391,392,393,394,395,396,397,398,399,400,401,402,403,404,405,406,407,408,409,410,411,412,413,414,415,416,417,418,419,420,421,422,423,424,425,426,427,428,429,430,431,432,433,434,435,436,437,438,439,440,441,442,443,444,445,446,447,448,449,450,451,452,453,454,455,456,457,458,459,460,461,462,463,464,465,466,467,468,469,470,471,472,473,474,475,476,477,478,479,480,481,482,483,484,485,486,487,488,489,490,491,492,493,494,495,496,497,498,499,500,501,502,503,504,505,506,507,508,509,510,511,512,513,514,515,516,517,518,519,520,521,522,523,524,525,526,527,528,529,530,531,532,533,534,535,536,537,538,539,540,541,542,543,544,545,546,547,548,549,550,551,552]. Only two PriCs (clear cell carcinomas) [6,7] were previously tested by molecular analysis searching for DNA mutations, without significant results, while no metECs were tested; further studies are required. For all these reasons, clinical information is fundamental and should be provided to the pathologists in order to make the proper diagnosis.
Finally, non-recognized, pre-existing, early-stage, pregnancy-associated vulvar carcinomas may be cut by the episiotomy procedure [51], or vulvar tumors may exceptionally attract other tumor implants (tumor-to-tumor metastasis) [448,463]. No metECs were implanted on a PriCs, according to our review.
4.5. Strength and Limits of Our Study
We performed a multidisciplinary systematic literature review of an infrequently analyzed topic, screening multiple databases. We followed the PRISMA guidelines, helpful for the critical evaluation of scientific articles of various gynecological and extragynecological topics in order to keep clinicians up-to-date and provide the base for developing clinical trials or guidelines. Systematic reviews require collaboration of doctors with different specialties, strengthening the clinical and research team [287,553,554,555,556,557,558,559,560,561,562,563,564,565,566,567,568,569,570,571,572,573,574,575,576,577].
Limits of our study included the following: (1) the rarity and retrospective nature of available data (most metECs and PriCs were case reports), which did not allow for significant or reliable statistical analyses [6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,56]; (2) incidence underestimation may be due to publication selection biases (authors’ choices of research topics; journal policies excluding case reports) [578]; (3) a lack of large multicenter studies or patients’ centralization, helpful for diagnostic and management purposes [579,580,581,582,583,584]; (4) the variable frequency of episiotomy procedure in different countries; (5) scant clinical–pathologic data (HPV testing, molecular analysis, etc.); (6) difficult assignment of the proper FIGO stage; (7) underestimation of other potential clinical–pathologic (co-)factors with prognostic impact. Future multicenter registries or collaborative studies could be helpful.
4.6. CC Management in Pregnancy
Cervical Pap smears should be preferably collected during the first prenatal visit; if positive, cervical biopsy can be performed. However, many women avoid gynecological exams. In some studies, pregnant and non-pregnant women have similar rates of abnormal Pap smears (2–8%); the cytological features can be altered by pregnancy-related changes, with potentially false-positive or negative results [80,81,187,188,189,231,269,585,586,587,588,589,590].
Pregnancy rates seem lower in oncologic patients, and placental metastases may occur, but the newborns in our study were healthy, without tumor metastases (when reported) [585,586,587,588,589,590,591,592,593,594,595,596,597,598,599,600,601,602]. Multidisciplinary management should deal with clinical and ethical dilemmas; in case of advanced-stage CCs, the decision to delay treatment until fetal maturity or to treat the patient immediately should consider gestational age, the patient’s will, CC size/stage, and life expectancy [585]. Before the 22nd gestational week, conization is recommended for HSIL (and maybe for early CCs); for a later diagnosis, surgery can be postponed to postpartum. Surgery is possible in all pregnancy trimesters but is best if performed during the early second trimester, with lower risk of miscarriage [185,192,194,195,205,239,254,258,259,586,587,588,589,590,603,604,605]. The NCCN guidelines [604] recommend a cesarean section ± radical hysterectomy and pelvic lymphadenectomy for pregnant stage I CC patients receiving delayed treatment. Radical trachelectomy successfully preserved pregnancy in few early-stage cases. Sentinel lymph node biopsy is contraindicated due to patent blue-induced anaphylactic shock or Tc-associated high radiation doses; if feasible, laparoscopic pelvic lymphadenectomy can be performed up to 22 gestational weeks due to technical issues. Traditional RT protocols should be modified, while ChT (usually contraindicated in pregnancy) was administered in exceptional cases [193,316,603,604,605,606,607,608,609,610,611,612,613,614].
Recent advances in immunotherapy (e.g., PD-1/PD-L1 inhibitors) may impact CC management. Indeed, increasing data from the literature and prospective studies demonstrated the effectiveness of immunotherapy or specific biomarker-specific treatments in CC or in tumors regardless of the histotype, thus promoting tumor-agnostic regulatory approaches [604]. For this reason, in recurrent, progressive, or metastastic patients, the NCCN guidelines recommend testing for mismatch repair system proteins (MMR), microsatellite instability, PD-L1 (positive for an immunohistochemical combined positive score, CPS ≥ 1), and comprehensive molecular profiling, including tumor mutation burden (TMB), HER2, NTRK, and RET analysis to select patients for immunotherapy and/or pan-tumor targeted drugs [272,604,615,616,617,618,619,620,621,622,623,624,625,626,627,628,629,630,631,632,633,634,635,636,637,638]. PD-1/PD-L1 targeted therapies achieved good results in immunologically “hot” tumors (non-small cell lung, renal, or bladder cancers, melanoma, etc.), while immunologically “cold” neoplasms can be resistant [639,640,641,642,643,644,645,646,647,648,649,650,651,652,653,654,655,656,657,658,659,660,661,662,663,664,665].
Pembrolizumab was approved for recurrent or metastatic PD-L1+ CCs (CPS ≥ 1) progressing on or after ChT, as well as for unresectable/metastatic, progressing solid tumors (highly instable, MMR deficient, or TMB-high) without other treatment options; pembrolizumab was included in NCCN-approved chemoradiation regimens for first- and second-line treatments of recurrent/metastatic disease and used in various mono- or combined-therapy options, sometimes in association with other drugs (such as platin-based drugs, topotecan, bevacizumab, tisotumab, etc.) and/or radiotherapy; other drugs affecting the PD-1/PD-L1 axis (cemiplimab, nivolumab) showed anti-CC activity and can be used in particular circumstances, but for further details, please refer to current NCCN guidelines [604,666,667,668,669,670,671,672]. Unfortunately, data about immunomarkers and immunotherapy were lacking in our series.
As metECs are rare, no clear guidelines are available for their management. An extensive gynecological examination is required, with accurate perineal and episiotomy inspection. Especially in pregnancy-related CC patients, careful and close follow-up and/or biopsy of new vulvar/perineal/episiotomy nodules or of pre-existing small lesions increasing in size are mandatory. When feasible, especially in otherwise low-stage tumors, metECs should be radically excised; during surgery, an attempt should be made to avoid anal injuries.
metECs were variably treated (surgery, ChT, and/or RT), with a good response in about half of the cases. Potential differences among various treatments in decreasing cancer recurrence should be further investigated. Large multicenter studies should be conducted to develop standardized protocols for reporting and managing these rare cases in the future.
5. Conclusions
As only 21 cases were reported, the episiotomy site seems to be a rare metastatic site; all metECs were pregnancy-associated CCs diagnosed in pregnancy or <1 year postpartum.
CC is the most common (72%) gynecologic cancer diagnosed in pregnancy, although its incidence is usually quite low (but variable as to the studied population).
Pregnancy may promote CC development and progression, but its prognostic impact should be further studied. CC can metastasize to episiotomy by spontaneous tumor detachment and implant, vaginal delivery, or iatrogenic manipulation (obstetrical or surgical), but vascular dissemination can also occur. These pathways may imply different metastatic risk; assignment of the proper stage could be difficult.
New episiotomy nodules (or pre-existing lesions increasing in size) should be carefully followed-up at short-term or biopsied; they may represent either benign lesions, PriCs, or metECs. Accurate clinical–radiological exams should identify and stage the primary tumor.
Especially in pregnancy-related CC patients, accurate gynecological exams should be conducted to search for episiotomy metECs.
Compared to PriCs, metECs occurred in younger (premenopausal) patients, were not associated with endometriosis, and demonstrated a slightly smaller size and a shorter mean time from episiotomy to episiotomy metastases, with a higher likelihood of a less favorable prognosis.
Cervical screening programs should be encouraged. Oncologic and obstetric CC treatment depends on gestational age, the patient’s choice, tumor stage and size, life expectancy, and the lymph node status. Before the 22nd gestational week, cervical conization for HSIL/early invasive CC is recommended; later, it may be appropriate to postpone surgery to postpartum. Surgery is best performed during the early second trimester, with lower risk of miscarriage. Cesarean section ± concurrent radical hysterectomy and pelvic node dissection are indicated for stage I CCs.
No treatment guidelines are available for metECs due to their rarity. The reported cases were variably treated (surgery and/or chemoradiation).
Author Contributions
Conceptualization, A.P., G.T. and V.D.M.; methodology, A.P., F.T., V.D.M.-I., B.M., V.Y.C., S.M., G.T., A.A., N.I.K., I.B. and V.D.M.; software, F.T., B.M., E.Z., A.B., V.Y.C., S.M., T.R., S.R. and A.M.; validation, F.T., G.T., V.Y.C., E.Z., A.A., L.M., C.C., A.B., T.R., M.Z. (Magda Zanelli), F.S. and M.Z. (Maurizio Zizzo); formal analysis, A.P., F.T., M.P.B., M.C.,T.R., M.Z. (Magda Zanelli) and V.D.M.; investigation, A.P., F.T., M.Z. (Maurizio Zizzo), B.M., V.Y.C., S.M., F.S., A.A. and V.D.M.-I.; resources, A.P., G.T., M.C., C.C., F.T., L.M., A.M., E.Z., A.B. and M.P.B.; data curation, A.P., F.T., G.T., E.Z., A.B., S.R., C.C., A.A. and M.P.B.; writing—original draft preparation, A.P., F.T., G.T., R.C., S.S., G.B., F.S., M.Z. (Maurizio Zizzo), M.Z. (Magda Zanelli), N.I.K., I.B., A.A., C.C. and V.D.M.; writing—review and editing, A.P., A.A., F.T., G.T. and V.D.M.; visualization, S.R., S.S., G.B., R.C., M.C., F.T., L.M. and L.A.; supervision, G.T., L.A., T.R., L.M. and V.D.M.; project administration, A.P., G.T. and V.D.M.; funding acquisition, G.T., A.P. and V.D.M. All authors have read and agreed to the published version of the manuscript.
Conflicts of Interest
The authors declare no conflicts of interest.
Funding Statement
The study was partially supported by the Italian Ministry of Health—Ricerca Corrente Annual Program 2026.
Footnotes
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
References
- 1.Thacker S.B., Banta H.D. Benefits and risks of episiotomy: An interpretative review of the English language literature, 1860–1980. Obstet. Gynecol. Surv. 1983;38:322–338. doi: 10.1097/00006254-198306000-00003. [DOI] [PubMed] [Google Scholar]
- 2.Carroli G., Mignini L. Episiotomy for vaginal birth. Cochrane Database Syst. Rev. 2009;1:CD000081. doi: 10.1002/14651858.CD000081.pub2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.Aragaw F.M., Belay D.G., Endalew M., Asratie M.H., Gashaw M., Tsega N.T. Level of episiotomy practice and its disparity among primiparous and multiparous women in Ethiopia: A systematic review and meta-analysis. Front. Glob. Womens Health. 2023;4:1153640. doi: 10.3389/fgwh.2023.1153640. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.Okeahialam N.A., Sultan A.H., Thakar R. The prevention of perineal trauma during vaginal birth. Am. J. Obstet. Gynecol. 2024;230:S991–S1004. doi: 10.1016/j.ajog.2022.06.021. [DOI] [PubMed] [Google Scholar]
- 5.Shiono P., Klebanoff M., Carey J.C. Midline episiotomies: More harm than good? Obstet. Gynecol. 1990;75:765–770. [PubMed] [Google Scholar]
- 6.Kojima N., Yoshida H., Uehara T., Ushigusa T., Asami Y., Shiraishi K., Kato T. Primary Clear Cell Adenocarcinoma of the Vulva: A Case Study with Mutation Analysis and Literature Review. Int. J. Surg. Pathol. 2019;27:792–797. doi: 10.1177/1066896919848823. [DOI] [PubMed] [Google Scholar]
- 7.Kasahara K., Itatani Y., Kawada K., Takahashi Y., Yamamoto T., Hoshino N., Okada T., Oshima N., Hida K., Nishigori T., et al. Laparoscopic posterior pelvic exenteration for clear cell adenocarcinoma arising in an episiotomy scar. Asian J. Endosc. Surg. 2022;15:642–646. doi: 10.1111/ases.13033. [DOI] [PubMed] [Google Scholar]
- 8.Xu S., Wang W., Sun L.P. Comparison of clear cell carcinoma and benign endometriosis in episiotomy scar-two cases report and literature review. BMC Womens Health. 2020;20:11. doi: 10.1186/s12905-020-0880-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Barrena-Medel N., Diaz L., Pabon M. Episiotomy-site clear cell carcinoma. Am. J. Obstet. Gynecol. 2021;224:225–226. doi: 10.1016/j.ajog.2020.07.006. [DOI] [PubMed] [Google Scholar]
- 10.Han L., Zheng A., Wang H. Clear cell carcinoma arising in previous episiotomy scar: A case report and review of the literature. J. Ovarian Res. 2016;9:1. doi: 10.1186/s13048-016-0211-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.Chene G., Darcha C., Dechelotte P., Mage G., Canis M. Malignant degeneration of perineal endometriosis in episiotomy scar, case report and review of the literature. Int. J. Gynecol. Cancer. 2007;17:709–714. doi: 10.1136/ijgc-00009577-200705000-00022. [DOI] [PubMed] [Google Scholar]
- 12.Kwon Y.S., Nam J.H., Choi G. Clear cell adenocarcinoma arising in endometriosis of a previous episiotomy site. Obstet. Gynecol. 2008;112:475–477. doi: 10.1097/AOG.0b013e318179475b. [DOI] [PubMed] [Google Scholar]
- 13.Todd R.W., Kehoe S., Gearty J. A case of clear cell carcinoma arising in extragonadal endometriosis. Int. J. Gynecol. Cancer. 2000;10:170–172. doi: 10.1046/j.1525-1438.2000.00024.x. [DOI] [PubMed] [Google Scholar]
- 14.Krasević M., Haller H., Iternicka Z., Valstelić I., Matejcić N. Adenoid cystic carcinoma of Bartholin’s gland: A case report. Eur. J. Gynaecol. Oncol. 2001;22:213–214. [PubMed] [Google Scholar]
- 15.Nagy P. Episiotomia hegében endometriosis talaján kialakult méhnyálkahártya carcinoma [Endometrial carcinoma arising from endometriosis in the episiotomy scar] Orv. Hetil. 2003;144:373–374. [PubMed] [Google Scholar]
- 16.Hitti I.F., Glasberg S.S., Lubicz S. Clear cell carcinoma arising in extraovarian endometriosis: Report of three cases and review of the literature. Gynecol. Oncol. 1990;39:314–320. doi: 10.1016/0090-8258(90)90259-N. [DOI] [PubMed] [Google Scholar]
- 17.Van Dam P.A., Irvine L., Lowe D.G., Fisher C., Barton D.P., Shepherd J.H. Carcinoma in episiotomy scars. Gynecol. Oncol. 1992;44:96–100. doi: 10.1016/0090-8258(92)90019-F. [DOI] [PubMed] [Google Scholar]
- 18.Olah K.S.J., Clarke F., Kingston R., Neilson J.P. Vulval carcinoma in an episiotomy scar—A rare cause of superficial dyspareunia. J. Obstet. Gynaecol. 1995;15:208. doi: 10.3109/01443619509015505. [DOI] [Google Scholar]
- 19.Yarandi F., Aghili M., Ramhormozian S., Shirali E. Endocervical adenocarcinoma implantation in episiotomy scar: A case report and review of the literature. J. Med. Case Rep. 2023;17:100. doi: 10.1186/s13256-023-03786-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.Carocha A.I., Pedroso C., Correia L., Gomes A., Jorge A.F. Glassy cell carcinoma of the cervix and metastasis in episiotomy scar: A case report. J. Low. Genit. Tract. Dis. 2015;19:e31–e34. doi: 10.1097/LGT.0000000000000054. [DOI] [PubMed] [Google Scholar]
- 21.Hafeez I., Lawenda B.D., Schilder J.M., Johnstone P.A. Prolonged survival after episiotomy recurrence of cervical cancer complicating pregnancy. Eur. J. Gynaecol. Oncol. 2011;32:211–213. [PubMed] [Google Scholar]
- 22.Neumann G., Rasmussen K.L., Petersen L.K. Cervical adenosquamous carcinoma: Tumor implantation in an episiotomy scar. Obstet. Gynecol. 2007;110:467–469. doi: 10.1097/01.AOG.0000275260.45730.ea. [DOI] [PubMed] [Google Scholar]
- 23.Baloglu A., Uysal D., Aslan N., Yigit S. Advanced stage of cervical carcinoma undiagnosed during antenatal period in term pregnancy and concomitant metastasis on episiotomy scar during delivery: A case report and review of the literature. Int. J. Gynecol. Cancer. 2007;17:1155–1159. doi: 10.1111/j.1525-1438.2007.00926.x. [DOI] [PubMed] [Google Scholar]
- 24.Heron D.E., Axtel A., Gerszten K., Amortegui A., Kelley J., Comerci J., Edwards R.P. Villoglandular adenocarcinoma of the cervix recurrent in an episiotomy scar: A case report in a 32-year-old female. Int. J. Gynecol. Cancer. 2005;15:366–371. doi: 10.1136/ijgc-00009577-200503000-00030. [DOI] [PubMed] [Google Scholar]
- 25.Goldman N.A., Goldberg G.L. Late recurrence of squamous cell cervical cancer in an episiotomy site after vaginal delivery. Obstet. Gynecol. 2003;101:1127–1129. doi: 10.1097/00006250-200305001-00029. [DOI] [PubMed] [Google Scholar]
- 26.Sood A.K., Sorosky J.I., Mayr N., Anderson B., Buller R.E., Niebyl J. Cervical cancer diagnosed shortly after pregnancy: Prognostic variables and delivery routes. Obstet. Gynecol. 2000;95:832–838. doi: 10.1097/00006250-200006000-00010. [DOI] [PubMed] [Google Scholar]
- 27.Jereczek B., Jassem J., Serkies K. Implantation of a cervical carcinoma in the episiotomy site. A case report and review of the literature. Ital. J. Gynaecol. Obstet. 1996;8:80–83. [Google Scholar]
- 28.Van den Broek N.R., Lopes A.D., Ansink A., Monaghan J.M. “Microinvasive” adenocarcinoma of the cervix implanting in an episiotomy scar. Gynecol. Oncol. 1995;59:297–299. doi: 10.1006/gyno.1995.0025. [DOI] [PubMed] [Google Scholar]
- 29.Cliby W.A., Dodson M.K., Podratz K.C. Cervical cancer complicated by pregnancy: Episiotomy site recurrences following vaginal delivery. Obstet. Gynecol. 1994;84:179–182. [PubMed] [Google Scholar]
- 30.Khalil A.M., Khatib R.A., Mufarrij A.A., Tawil A.N., Issa P.Y. Squamous cell carcinoma of the cervix implanting in the episiotomy site. Gynecol. Oncol. 1993;51:408–410. doi: 10.1006/gyno.1993.1313. [DOI] [PubMed] [Google Scholar]
- 31.Gordon A.N., Jensen R., Jones H.W., 3rd Squamous carcinoma of the cervix complicating pregnancy: Recurrence in episiotomy after vaginal delivery. Obstet. Gynecol. 1989;73:850–852. [PubMed] [Google Scholar]
- 32.Copeland L.J., Saul P.B., Sneige N. Cervical adenocarcinoma: Tumor implantation in the episiotomy sites of two patients. Gynecol. Oncol. 1987;28:230–235. doi: 10.1016/0090-8258(87)90219-8. [DOI] [PubMed] [Google Scholar]
- 33.Burgess S.P., Waymont B. Implantation of a cervical carcinoma in an episiotomy site. Case Rep. Br. J. Obstet. Gynaecol. 1987;94:598–599. doi: 10.1111/j.1471-0528.1987.tb03159.x. [DOI] [PubMed] [Google Scholar]
- 34.Hartmann K., Viswanathan M., Palmieri R., Gartlehner G., Thorp J., Lohr K.N. Outcomes of routine episiotomy: A systematic review. JAMA. 2005;293:2141–2148. doi: 10.1001/jama.293.17.2141. [DOI] [PubMed] [Google Scholar]
- 35.Jiang H., Qian X., Carroli G., Garner P. Selective versus routine use of episiotomy for vaginal birth. Cochrane Database Syst. Rev. 2017;2:CD000081. doi: 10.1002/14651858.CD000081.pub3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 36.Uustal E., Edqvist M. Subclassification of second-degree tears at delivery: Creation and reported outcomes. BMC Pregnancy Childbirth. 2025;25:272. doi: 10.1186/s12884-025-07371-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 37.Risløkken J., Macedo M.D., Bø K., Ellström Engh M., Siafarikas F. The severity of second-degree perineal tears and dyspareunia during one year postpartum: A prospective cohort study. AOGS. 2025;104:968–975. doi: 10.1111/aogs.15084. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 38.Arcieri M., Battello G., Graziano A., Alfarè Lovo M., Restaino S., D’Antonio F., Lucidi A., Segatti M., Comuzzi M., Barbui E., et al. The outcome of early perineal rehabilitation in obstetric anal sphincter injuries: A single-center experience. Arch. Gynecol. Obstet. 2025;311:1711–1719. doi: 10.1007/s00404-024-07906-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 39.Edqvist M., Ajne G., Teleman P., Tegerstedt G., Rubertsson C. Postpartum perineal pain and its association with sub-classified second-degree tears and perineal trauma-A follow-up of a randomized controlled trial. AOGS. 2024;103:2314–2323. doi: 10.1111/aogs.14938. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 40.Ramar C.N., Vadakekut E.S., Grimes W.R. StatPearls [Internet] StatPearls Publishing; Treasure Island, FL, USA: 2025. Perineal Lacerations. 11 August 2024. [PubMed] [Google Scholar]
- 41.Roman M.P., Aggarwal S., Doumouchtsis S.K., CHORUS, an International Collaboration for Harmonising Outcomes, Research and Standards in Urogynaecology and Women’s Health (i-chorus.org) A systematic review and meta-synthesis of qualitative studies on childbirth perineal trauma for the development of a Core Outcome Set. Eur. J. Obstet. Gynecol. Reprod. Biol. 2023;290:51–59. doi: 10.1016/j.ejogrb.2023.09.010. [DOI] [PubMed] [Google Scholar]
- 42.Hoque A.M., Hoque M.E., Hal G.V. Incidence, trends and risk factors for perineal injuries of low-risk pregnant women: Experience from a midwife run obstetric unit, South Africa. Afr. J. Reprod. Health. 2021;25:52–62. doi: 10.29063/ajrh2021/v25i4.6. [DOI] [PubMed] [Google Scholar]
- 43.Naidoo T.D., Moodley J. Obstetric perineal injury: Risk factors and prevalence in a resource-constrained setting. Trop. Dr. 2015;45:252–254. doi: 10.1177/0049475513515214. [DOI] [PubMed] [Google Scholar]
- 44.Dendini M., Aldossari S.K., AlQassab H.A., Aldraihem O.O., Almalki A. Retrospective Case-Control Study of Extended Birth Perineal Tears and Risk Factors. Cureus. 2024;16:e57132. doi: 10.7759/cureus.57132. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 45.Liljestrand J. Episiotomy for Vaginal Birth: RHL Commentary (2003) The WHO Reproductive Health Library. World Health Organization; Geneva, Switzerland: 2016. [Google Scholar]
- 46.Kozhimannil K.B., Karaca-Mandic P., Blauer-Peterson C.J., Shah N.T., Snowden J.M. Uptake and Utilization of Practice Guidelines in Hospitals in the United States: The Case of Routine Episiotomy. Jt. Comm. J. Qual. Patient Saf. 2017;43:41–48. doi: 10.1016/j.jcjq.2016.10.002. [DOI] [PubMed] [Google Scholar]
- 47.Gabbe S.G., Niebyl J.R., Simpson J.L., Landon M.B., Galan H.L., Jauniaux E.R.M., Driscoll D.A. Obstetrics: Normal and Problem Pregnancies. 6th ed. Elsevier; Philadelphia, PA, USA: 2012. [Google Scholar]
- 48.Peaceman A.M. Operative Vaginal Birth: ACOG Practice Bulletin, Number 219. Obstet. Gynecol. 2020;135:e149–e159. doi: 10.1097/AOG.0000000000003764. [DOI] [PubMed] [Google Scholar]
- 49.Izuka E., Dim C., Chigbu C., Obiora-Izuka C. Prevalence and predictors of episiotomy among women at first birth in enugu, South-East Nigeria. Ann. Med. Health Sci. Res. 2014;4:928–932. doi: 10.4103/2141-9248.144916. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 50.Graham I.D., Carroli G., Davies C., Medves J.M. Episiotomy rates around the world: An update. Birth. 2005;32:219–223. doi: 10.1111/j.0730-7659.2005.00373.x. [DOI] [PubMed] [Google Scholar]
- 51.Palicelli A., Giaccherini L., Zanelli M., Bonasoni M.P., Gelli M.C., Bisagni A., Zanetti E., De Marco L., Torricelli F., Manzotti G., et al. How Can We Treat Vulvar Carcinoma in Pregnancy? A Systematic Review of the Literature. Cancers. 2021;13:836. doi: 10.3390/cancers13040836. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 52.Kallionpää R.A., Määttänen J., Leppävirta J., Peltonen S., Peltonen J. Pregnancy and the Risk for Cancer in Neurofibromatosis 1. Genes Chromosomes Cancer. 2025;64:e70017. doi: 10.1002/gcc.70017. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 53.Scheyda-Yoo K., Hofer U., Várnai-Händel A., Maus M.K., Dumoulin F.L. Rapid growth and malignant transformation of a mucinous cystic neoplasm during pregnancy—A case report. Z. Gastroenterol. 2024;62:1048–1052. doi: 10.1055/a-2239-7898. [DOI] [PubMed] [Google Scholar]
- 54.Liu D., Wei H., Huang J., Shen H., Wang X., Hu C. Clear Cell Adenocarcinoma Arising from Endometriosis in Abdominal Wall Cesarean Section Scar: A Case Report and Literature Review. Int. J. Women’s Health. 2023;15:25–32. doi: 10.2147/IJWH.S382235. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 55.D’Agostino C., Surico D., Monga G., Palicelli A. Pregnancy-related decidualization of subcutaneous endometriosis occurring in a post-caesarean section scar: Case study and review of the literature. Pathol. Res. Pract. 2019;215:828–831. doi: 10.1016/j.prp.2019.01.024. [DOI] [PubMed] [Google Scholar]
- 56.Palicelli A., Torricelli F., Tonni G., Bisagni A., Zanetti E., Zanelli M., Medina-Illueca V.D., Melli B., Zizzo M., Morini A., et al. Primary Carcinomas of the Episiotomy Scar Site: A Systematic Literature Review. Curr. Oncol. 2025;32:65. doi: 10.3390/curroncol32020065. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 57.van der Vange N., Weverling G.J., Ketting B.W., Ankum W.M., Samlal R., Lammes F.B. The prognosis of cervical cancer associated with pregnancy: A matched cohort study. Obstet. Gynecol. 1995;85:1022–1026. doi: 10.1016/0029-7844(95)00059-Z. [DOI] [PubMed] [Google Scholar]
- 58.Lee R.B., Neglia W., Park R.C. Cervical carcinoma in pregnancy. Obstet. Gynecol. 1981;58:584–589. [PubMed] [Google Scholar]
- 59.Hacker N.F., Berek J.S., Lagasse L.D., Charles E.H., Savage E.W., Moore J.G. Carcinoma of the cervix associated with pregnancy. Obstet. Gynecol. 1982;59:735–746. [PubMed] [Google Scholar]
- 60.Bhatla N., Berek J.S., Cuello Fredes M., Denny L.A., Grenman S., Karunaratne K., Kehoe S.T., Konishi I., Olawaiye A.B., Prat J., et al. Revised FIGO staging for carcinoma of the cervix uteri. Int. J. Gynaecol. Obstet. 2019;145:129–135. doi: 10.1002/ijgo.12749. Erratum in Int. J. Gynaecol. Obstet. 2019, 147, 279-280. https://doi.org/10.1002/ijgo.12969 . [DOI] [PubMed] [Google Scholar]
- 61.Olthof E.P., Mom C.H., van der Velden J. More attention is needed for the corrigendum to the revised FIGO staging for carcinoma of the cervix uteri. Int. J. Gynecol. Cancer. 2020;30:1850. doi: 10.1136/ijgc-2020-001959. [DOI] [PubMed] [Google Scholar]
- 62.Li K.P., Ajebo E.M., Diamond D., Powell M., Belcher M. Primary vulvar melanoma in an adolescent patient. Pediatr. Dermatol. 2023;40:749–750. doi: 10.1111/pde.15296. [DOI] [PubMed] [Google Scholar]
- 63.Dobrică E.C., Vâjâitu C., Condrat C.E., Crețoiu D., Popa I., Gaspar B.S., Suciu N., Crețoiu S.M., Varlas V.N. Vulvar and Vaginal Melanomas-The Darker Shades of Gynecological Cancers. Biomedicines. 2021;9:758. doi: 10.3390/biomedicines9070758. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 64.Bhattacharyya S.K., Saha S.P., Mukherjee G., Samanta J. Metastatic vulvo-vaginal choriocarcinoma mimicking a Bartholin cyst and vulvar hematoma-two unusual presentations. J. Turk. Ger. Gynecol. Assoc. 2012;13:218–220. doi: 10.5152/jtgga.2011.73. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 65.Boufettal H. Vulva choriocarcinoma. Pan Afr. Med. J. 2016;24:328. doi: 10.11604/pamj.2016.24.328.10482. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 66.Onuigbo W.I. Clinical awareness of vulvo-vagina metastaeses in choriocarcinoma: Case reports. Niger. Med. J. 1978;8:270–271. [PubMed] [Google Scholar]
- 67.Boufettal H., Samouh N. Vulva choriocarcinoma. Pan Afr. Med. J. 2016;25:225. doi: 10.11604/pamj.2016.25.225.10462. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 68.Mitrovic S.L.j., Arsenijevic P.S., Kljakic D., Djuric J.M., Milosavljevic M.Z., Protrka Z.M., Vojinovic R.H. Gestational choriocarcinoma of the cervix. Arch. Iran. Med. 2014;17:783–785. [PubMed] [Google Scholar]
- 69.Mandato V.D., Torricelli F., Mastrofilippo V., Palicelli A., Costagliola L., Aguzzoli L. Primary Ovarian Leiomyosarcoma Is a Very Rare Entity: A Narrative Review of the Literature. Cancers. 2023;15:2953. doi: 10.3390/cancers15112953. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 70.Yang J., Guo Q., Yang Y., Zhang J., Lang J., Shi H. Primary vulvar Ewing sarcoma/primitive neuroectodermal tumor: A report of one case and review of the literature. J. Pediatr. Adolesc. Gynecol. 2012;25:e93–e97. doi: 10.1016/j.jpag.2012.03.005. [DOI] [PubMed] [Google Scholar]
- 71.Koufopoulos N.I., Samaras M.G., Kotanidis C., Skarentzos K., Pouliakis A., Boutas I., Kontogeorgi A., Zanelli M., Palicelli A., Zizzo M., et al. Primary and Metastatic Pancreatic Ewing Sarcomas: A Case Report and Review of the Literature. Diagnostics. 2024;14:2694. doi: 10.3390/diagnostics14232694. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 72.Ferron G., Bataillon G., Martinez A., Chibon F., Valentin T. Gynecological sarcomas, surgical management: Primary, metastatic, and recurrent disease. Int. J. Gynecol. Cancer. 2024;34:393–402. doi: 10.1136/ijgc-2023-004582. [DOI] [PubMed] [Google Scholar]
- 73.Rekhi B., Bhatia S., Shetty O., Maheshwari A. Poorly differentiated biphasic synovial sarcoma of the vulva, displaying SS18::SSX1 fusion and weak to absent (mosaic) INI1/SMARCB1 immunostaining: A rare case with literature review. Indian J. Pathol. Microbiol. 2024;67:396–400. doi: 10.4103/ijpm.ijpm_560_23. [DOI] [PubMed] [Google Scholar]
- 74.Sharma A.E., Wepy C.B., Chapel D.B., Maccio L., Irshaid L., Al-Ibraheemi A., Dickson B.C., Nucci M.R., Crum C.P., Fletcher C.D.M., et al. Ewing sarcoma of the female genital tract: Clinicopathologic analysis of 21 cases with an emphasis on the differential diagnosis of gynecologic round cell, spindle, and epithelioid neoplasms. Am. J. Surg. Pathol. 2024;48:972–984. doi: 10.1097/PAS.0000000000002232. [DOI] [PubMed] [Google Scholar]
- 75.Nongo B.H., Isah D.A., Ahmed A.B., Abdul O.A. Vaginal endometrial stroma sarcoma: A case report of a rare disease. J. West Afr. Coll. Surg. 2024;14:233–237. doi: 10.4103/jwas.jwas_120_23. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 76.Ong A.C., Lim T.Y., Tan T.C., Wang S., Raju G.C. Proximal epithelioid sarcoma of the vulva: A case report and review of current medical literature. J. Obstet. Gynaecol. Res. 2012;38:1032–1035. doi: 10.1111/j.1447-0756.2011.01819.x. [DOI] [PubMed] [Google Scholar]
- 77.Palicelli A., Ardighieri L., Broggi G., Caltabiano R., Melli B., Gelli M.C., Zanelli M., Bonasoni M.P., Asaturova A., Zizzo M., et al. Lipoleiomyomas of the Uterine Cervix: A New Series including the First Recurrent Case and the First Systematic Literature Review. J. Pers. Med. 2022;12:1852. doi: 10.3390/jpm12111852. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 78.Caldana P.L. Su di un caso di metastasi vulvare da sarcoma parotideo. Pathologica. 1968;60:275–278. [PubMed] [Google Scholar]
- 79. [(accessed on 4 June 2025)]; Available online: https://seer.cancer.gov/statfacts/html/cervix.html.
- 80.WHO Classification of Tumours Editorial Board . Female Genital Tumours: WHO Classification of Tumours. 5th ed. Volume 4 IARC; Lyon, France: 2020. [Google Scholar]
- 81.Zhang S., Xu H., Zhang L., Qiao Y. Cervical cancer: Epidemiology, risk factors and screening. Chin. J. Cancer Res. 2020;32:720–728. doi: 10.21147/j.issn.1000-9604.2020.06.05. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 82.Rueckert S., Oestreich K., Gallwas J., Kolben T., Ditsch N., Starrach T., Blume C., Dannecker C., Kolben T.M. Cervical dysplasia during pregnancy—Effects on oncological and psychological outcome: A case control study. Eur. J. Gynaecol. Oncol. 2018;39:399–403. [Google Scholar]
- 83.Martimbeau P.W., Kjorstad K.E., Iversen T. Stage IB carcinoma of the cervix, the Norwegian Radium hospital. II. Results when pelvic nodes are involved. Obstet. Gynecol. 1982;60:215–218. [PubMed] [Google Scholar]
- 84.Cheng X., Cai S., Li Z., Tang M., Xue M., Zang R. The prognosis of women with stage IB1-IIB node-positive cervical carcinoma after radical surgery. World J. Surg. Oncol. 2004;2:47. doi: 10.1186/1477-7819-2-47. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 85.Smith L.H., Dalrymple J.L., Leiserowitz G.S., Danielsen B., Gilbert W.M. Obstetrical deliveries associated with maternal malignancy in California, 1992 through 1997. Am. J. Obstet. Gynecol. 2001;184:1504. doi: 10.1067/mob.2001.114867. [DOI] [PubMed] [Google Scholar]
- 86.Demeter A., Sziller I., Csapó Z., Szánthó A., Papp Z. Outcome of pregnancies after cold-knife conization of the uterine cervix during pregnancy. Eur. J. Gynaecol. Oncol. 2002;23:207. [PubMed] [Google Scholar]
- 87.Duggan B., Muderspach L.I., Roman L.D., Curtin J.P., d’Ablaing G., 3rd, Morrow C.P. Cervical cancer in pregnancy: Reporting on planned delay in therapy. Obstet. Gynecol. 1993;82:598–602. [PubMed] [Google Scholar]
- 88.Williams T.J., Brack C.B. Carcinoma of the cervix in pregnancy. Cancer. 1964;17:1486–1491. doi: 10.1002/1097-0142(196411)17:11<1486::AID-CNCR2820171118>3.0.CO;2-S. [DOI] [PubMed] [Google Scholar]
- 89.Jones H.W., Seegar J.G. Novak’s Textbook of Gynecology, 10th ed. Williams and Wilkins: Baltimore, MD, USA, 1981
- 90.Baltzer J., Regenbrecht M.D., Kopcke W., Zander J. Carcinoma of the cervix and pregnancy. Int. J. Gynaecol. Obstet. 1990;31:317–323. doi: 10.1016/0020-7292(90)90908-4. [DOI] [PubMed] [Google Scholar]
- 91.Goff B.A., Paley P.J., Wui-Jin K., Petersdorf S.H., Douglas J.G., Greer B.F. Cancer in the pregnant patient. In: Hoskins W.J., Perez C.A., Young R.C., editors. Principles and Practice of Gynecologic Oncology. Lippincott-Raven; Philadelphia, PA, USA: 1999. pp. 501–528. [Google Scholar]
- 92.Makepeace L.M., Spirtos A.N., Nambiar A., Rodriguez A.N., Duryea E., Spong C.Y., Lea J. Prognosis of cervical cancer when diagnosed during pregnancy. Gynecol. Oncol. Rep. 2023;48:30–31. doi: 10.1016/S2352-5789(23)00280-1. [DOI] [Google Scholar]
- 93.Han S.N., Mhallem G.M., Van Calsteren K., Amant F. Cervical cancer in pregnant women: Treat, wait or interrupt? Assessment of current clinical guidelines, innovations and controversies. Ther. Adv. Med. Oncol. 2013;5:211–219. doi: 10.1177/1758834013494988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 94.Al-Halal H., Kezouh A., Abenhaim H. Incidence and obstetrical outcomes of cervical intraepithelial neoplasia and cervical cancer in pregnancy: A population-based study on 8.8 million births. Arch. Gynecol. Obstet. 2012;287:245–250. doi: 10.1007/s00404-012-2475-3. [DOI] [PubMed] [Google Scholar]
- 95.Takushi M., Moromizato H., Sakumoto K., Kanazawa K. Management of invasive carcinoma of the uterine cervix associated with pregnancy: Outcome of intentional delay in treatment. Gynecol. Oncol. 2002;87:185–189. doi: 10.1006/gyno.2002.6813. [DOI] [PubMed] [Google Scholar]
- 96.Amant F., Berveiller P., Boere I., Cardonick E., Fruscio R., Fumagalli M., Halaska M.J., Hasenburg A., Johansson A.L.V., Lambertini M., et al. Gynecologic cancers in pregnancy: Guidelines based on a third international consensus meeting. Ann. Oncol. 2019;30:1601–1612. doi: 10.1093/annonc/mdz228. [DOI] [PubMed] [Google Scholar]
- 97.Ichimura S., Ohara K., Kono M., Mizutani K., Kitamura Y., Saga I., Kanai R., Akiyama T., Toda M., Kohno M., et al. Molecular investigation of brain tumors progressing during pregnancy or postpartum period: The association between tumor type, their receptors, and the timing of presentation. Clin. Neurol. Neurosurg. 2021;207:106720. doi: 10.1016/j.clineuro.2021.106720. [DOI] [PubMed] [Google Scholar]
- 98.Holtan S.G., Creedon D.J., Haluska P., Markovic S.N. Cancer and pregnancy: Parallels in growth, invasion, and immune modulation and implications for cancer therapeutic agents. Mayo Clin. Proc. 2009;84:985–1000. doi: 10.1016/S0025-6196(11)60669-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 99.Muralidhara P., Sood V., Vinayak Ashok V., Bansal K. Pregnancy and tumour: The parallels and differences in regulatory T cells. Front. Immunol. 2022;13:866937. doi: 10.3389/fimmu.2022.866937. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 100.Fruscio R., Trozzi R., Galimberti S., LeJeune C., Van Calsteren K., Delle Marchette M., Cardonick E., Mascilini F., Halaska M., Peters I., et al. Epithelial ovarian cancer and borderline tumors during pregnancy: A report from the International Network on Cancer, Infertility, and Pregnancy. Int. J. Gynecol. Cancer. 2025;35:100053. doi: 10.1016/j.ijgc.2024.100053. [DOI] [PubMed] [Google Scholar]
- 101.Leibetseder A., Mair M.J., Serra A.S., Spiro Z., Aichholzer M., Widhalm G., Eckert F., Wöhrer A., Helbok R., Weis S., et al. Association of pregnancy with tumour progression in patients with glioma. Eur. J. Cancer. 2025;218:115259. doi: 10.1016/j.ejca.2025.115259. [DOI] [PubMed] [Google Scholar]
- 102.Rakoczy K., Kaczor J., Sołtyk A., Jonderko L., Sędzik M., Lizon J., Lewandowska A., Saczko M., Kulbacka J. Pregnancy, abortion, and birth control methods’ complicity with breast cancer occurrence. Mol. Cell. Endocrinol. 2024;590:112264. doi: 10.1016/j.mce.2024.112264. [DOI] [PubMed] [Google Scholar]
- 103.Zeitler C., Fuderer L., Schmitz K., Arora R., Dammerer D. Pheochromocytoma Turned Malignant During Pregnancy in a Patient With Neurofibromatosis Type I—A Case Report and Systematic Review of the Current Literature. Anticancer Res. 2022;42:4647–4656. doi: 10.21873/anticanres.15969. [DOI] [PubMed] [Google Scholar]
- 104.Troisi R., Bjørge T., Gissler M., Grotmol T., Kitahara C.M., Myrtveit Saether S.M., Ording A.G., Sköld C., Sørensen H.T., Trabert B., et al. The role of pregnancy, perinatal factors and hormones in maternal cancer risk: A review of the evidence. J. Intern. Med. 2018;283:430–445. doi: 10.1111/joim.12747. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 105.Slepicka P.F., Cyrill S.L., Dos Santos C.O. Pregnancy and Breast Cancer: Pathways to Understand Risk and Prevention. Trends Mol. Med. 2019;25:866–881. doi: 10.1016/j.molmed.2019.06.003. [DOI] [PubMed] [Google Scholar]
- 106.Johansson A.L., Andersson T.M., Hsieh C.C., Cnattingius S., Dickman P.W., Lambe M. Family history and risk of pregnancy-associated breast cancer (PABC) Breast Cancer Res. Treat. 2015;151:209–217. doi: 10.1007/s10549-015-3369-4. [DOI] [PubMed] [Google Scholar]
- 107.Nichols H.B., Schoemaker M.J., Cai J., Xu J., Wright L.B., Brook M.N., Jones M.E., Adami H.O., Baglietto L., Bertrand K.A., et al. Breast Cancer Risk After Recent Childbirth: A Pooled Analysis of 15 Prospective Studies. Ann. Intern. Med. 2019;170:22–30. doi: 10.7326/M18-1323. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 108.Van Calsteren K., Heyns L., De Smet F., Van Eycken L., Gziri M.M., Van Gemert W., Halaska M., Vergote I., Ottevanger N., Amant F. Cancer during pregnancy: An analysis of 215 patients emphasizing the obstetrical and the neonatal outcomes. J. Clin. Oncol. 2010;28:683–689. doi: 10.1200/JCO.2009.23.2801. [DOI] [PubMed] [Google Scholar]
- 109.Lee Y.Y., Roberts C.L., Dobbins T., Stavrou E., Black K., Morris J., Young J. Incidence and outcomes of pregnancy-associated cancer in Australia, 1994–2008: A population-based linkage study. BJOG. 2012;119:1572–1582. doi: 10.1111/j.1471-0528.2012.03475.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 110.Suelmann B.B.M., van Dooijeweert C., van der Wall E., Linn S., van Diest P.J. Pregnancy-associated breast cancer: Nationwide Dutch study confirms a discriminatory aggressive histopathologic profile. Breast Cancer Res. Treat. 2021;186:699–704. doi: 10.1007/s10549-021-06130-w. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 111.Kamper-Jørgensen M., Biggar R.J., Tjønneland A., Hjalgrim H., Kroman N., Rostgaard K., Stamper C.L., Olsen A., Andersen A.M., Gadi V.K. Opposite effects of microchimerism on breast and colon cancer. Eur. J. Cancer. 2012;48:2227–2235. doi: 10.1016/j.ejca.2012.02.006. [DOI] [PubMed] [Google Scholar]
- 112.Racicot K., Kwon J.Y., Aldo P., Silasi M., Mor G. Understanding the complexity of the immune system during pregnancy. Am. J. Reprod. Immunol. 2014;72:107–116. doi: 10.1111/aji.12289. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 113.Aghaeepour N., Ganio E.A., Mcilwain D., Tsai A.S., Tingle M., Van Gassen S., Gaudilliere D.K., Baca Q., McNeil L., Okada R., et al. An immune clock of human pregnancy. Sci. Immunol. 2017;2:eaan2946. doi: 10.1126/sciimmunol.aan2946. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 114.Lo Y.M., Lo E.S., Watson N., Noakes L., Sargent I.L., Thilaganathan B., Wainscoat J.S. Two-way cell traffic between mother and fetus: Biologic and clinical implications. Blood. 1996;88:4390–4395. doi: 10.1182/blood.V88.11.4390.bloodjournal88114390. [DOI] [PubMed] [Google Scholar]
- 115.Cellich P.P., Nayyar R., Wong E. Acinic cell carcinoma of the parotid gland in pregnancy: An approach to cancer in pregnancy. BMJ Case Rep. 2018;2018:bcr2018224320. doi: 10.1136/bcr-2018-224320. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 116.Al-Zaher N.N., Obeid A.A. Acinic cell carcinoma in pregnancy: A case report and review of the literature. J. Med. Case Rep. 2011;5:91. doi: 10.1186/1752-1947-5-91. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 117.Prabhu R.V., Dinkar A., Spadigam A., Prabhu V. Low-grade papillary adenocarcinoma of minor salivary glands in pregnancy. Indian J. Cancer. 2015;52:644–645. doi: 10.4103/0019-509X.178438. [DOI] [PubMed] [Google Scholar]
- 118.Atabo A., Bradley P.J. Management principles of head and neck cancers during pregnancy: A review and case series. Oral Oncol. 2008;44:236–241. doi: 10.1016/j.oraloncology.2007.02.003. [DOI] [PubMed] [Google Scholar]
- 119.Palluch F., Lehmann M., Volz J., Upile T., Sudhoff H. The rapid growth of a pleomorphic adenoma of the parotid gland in the third trimester of pregnancy. J. Med. Case Rep. 2011;5:141. doi: 10.1186/1752-1947-5-141. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 120.Rafizadeh S.M., Ghadimi H., Zarei Vesal N., Nozarian Z., Nikdel M. Unexpected recurrence and rapid progression of lacrimal gland adenoid cystic carcinoma during pregnancy: A case report. Orbit. 2023;42:645–649. doi: 10.1080/01676830.2022.2070920. [DOI] [PubMed] [Google Scholar]
- 121.Tao H., Sano Y., Yamane M., Toyooka S., Oto T., Date H. Bronchial mucoepidermoid carcinoma with recurrent hemoptysis in a pregnant woman: Report of a case. Surg. Today. 2008;38:850–852. doi: 10.1007/s00595-007-3722-2. [DOI] [PubMed] [Google Scholar]
- 122.Meda S., Reginald B.A., Reddy B.S. Immunohistochemical study of the expression of human chorionic gonadotropin-β in salivary gland tumors. J. Cancer Res. Ther. 2018;14:952–956. doi: 10.4103/0973-1482.184523. [DOI] [PubMed] [Google Scholar]
- 123.Bergamini C., Cavalieri S., Sanguineti G., Farneti A., Licitra L. Treatment of HER2+ metastatic salivary ductal carcinoma in a pregnant woman: A case report. Oxf. Med. Case Rep. 2019;2019:omz102. doi: 10.1093/omcr/omz102. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 124.Palicelli A. Intraductal carcinomas of the salivary glands: Systematic review and classification of 93 published cases. APMIS. 2020;128:191–200. doi: 10.1111/apm.13009. [DOI] [PubMed] [Google Scholar]
- 125.Palicelli A., Barbieri P., Mariani N., Re P., Galla S., Sorrentino R., Locatelli F., Salfi N., Valente G. Unicystic high-grade intraductal carcinoma of the parotid gland: Cytological and histological description with clinic-pathologic review of the literature. APMIS. 2018;126:771–776. doi: 10.1111/apm.12882. [DOI] [PubMed] [Google Scholar]
- 126.Palicelli A. What do we know about the cytological features of pure intraductal carcinomas of the salivary glands? Cytopathology. 2020;31:185–192. doi: 10.1111/cyt.12790. [DOI] [PubMed] [Google Scholar]
- 127.Behtash N., Karimi Zarchi M., Modares Gilani M., Ghaemmaghami F., Mousavi A., Ghotbizadeh F. Ovarian carcinoma associated with pregnancy: A clinicopathologic analysis of 23 cases and review of the literature. BMC Pregnancy Childbirth. 2008;8:3. doi: 10.1186/1471-2393-8-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 128.Mierzyński R., Dłuski D.F., Gogacz M., Golubka I., Leszczyńska-Gorzelak B. Pregnancy complicated by ovarian planoepithelial carcinoma arising in mature cystic teratoma. J. Obstet. Gynaecol. 2019;39:408–409. doi: 10.1080/01443615.2018.1465899. [DOI] [PubMed] [Google Scholar]
- 129.Dgani R., Shoham Z., Atar E., Zosmer A., Lancet M. Ovarian carcinoma during pregnancy: A study of 23 cases in Israel between the years 1960 and 1984. Gynecol. Oncol. 1989;33:326–331. doi: 10.1016/0090-8258(89)90521-0. [DOI] [PubMed] [Google Scholar]
- 130.Jorgensen J.R., Brewer M.A., Runowicz C.D. Ovarian cancer in pregnancy. Semin. Perinatol. 2025;49:152043. doi: 10.1016/j.semperi.2025.152043. [DOI] [PubMed] [Google Scholar]
- 131.Gezginç K., Karataylı R., Yazıcı F., Acar A., Celik C., Capar M. Ovarian cancer during pregnancy. Int. J. Gynaecol. Obstet. 2011;115:140–143. doi: 10.1016/j.ijgo.2011.05.025. [DOI] [PubMed] [Google Scholar]
- 132.Jiang X., Ye Z., Yu W., Fang Q., Jiang Y. Chemotherapy for ovarian cancer during pregnancy: A systematic review and meta-analysis of case reports and series. J. Obstet. Gynaecol. Res. 2021;47:3425–3436. doi: 10.1111/jog.14957. [DOI] [PubMed] [Google Scholar]
- 133.Pei Y., Gou Y., Li N., Yang X., Han X., Huiling L. Efficacy and Safety of Platinum-Based Chemotherapy for Ovarian Cancer During Pregnancy: A Systematic Review and Meta-Analysis. Oncol. Ther. 2022;10:55–73. doi: 10.1007/s40487-021-00179-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 134.Liao Q., Deng D., Xie Q., Gong X., Meng X., Xia Y., Ai J., Li K. Clinical characteristics, pregnancy outcomes and ovarian function of pregnancy-associated breast cancer patients: A retrospective age-matched study. BMC Cancer. 2022;22:152. doi: 10.1186/s12885-022-09260-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 135.Aggarwal P., Kehoe S. Ovarian tumours in pregnancy: A literature review. Eur. J. Obstet. Gynecol. Reprod. Biol. 2011;155:119–124. doi: 10.1016/j.ejogrb.2010.11.023. [DOI] [PubMed] [Google Scholar]
- 136.Bignardi T., Condous G. The management of ovarian pathology in pregnancy. Best Pract. Res. Clin. Obstet. Gynaecol. 2009;23:539–548. doi: 10.1016/j.bpobgyn.2009.01.009. [DOI] [PubMed] [Google Scholar]
- 137.Ratanasrithong P., Benjapibal M. Pregnancy outcomes after conservative surgery for early-stage ovarian neoplasms. Asian Pac. J. Cancer Prev. 2017;18:2083–2087. doi: 10.22034/APJCP.2017.18.8.2083. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 138.Kaiser H.E., Nawab E., Nasir A., Chmielarczyk W., Krenn M. Neoplasms during the progression of pregnancy. Vivo. 2000;14:277–285. [PubMed] [Google Scholar]
- 139.Ueda M., Ueki M. Ovarian tumors associated with pregnancy. Int. J. Gynecol. Obstet. 1996;55:59–65. doi: 10.1016/0020-7292(96)02718-X. [DOI] [PubMed] [Google Scholar]
- 140.Li Z., Wang J., Chen Q. Struma ovarii and peritoneal strumosis during pregnancy. BMC Pregnancy Childbirth. 2021;21:347. doi: 10.1186/s12884-021-03815-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 141.Dumachița-Șargu G., Socolov R., Balan T.A., Gafițanu D., Akad M., Balan R.A. Struma Ovarii during Pregnancy. Diagnostics. 2024;14:1172. doi: 10.3390/diagnostics14111172. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 142.Donato S., Simões H., Leite V. Malignant Struma Ovarii with Concurrent Thyroid Cancer: Outcomes during and after Pregnancy. Eur. Thyroid. J. 2021;10:523–527. doi: 10.1159/000512735. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 143.Asaturova A., Magnaeva A., Tregubova A., Kometova V., Karamurzin Y., Martynov S., Lipatenkova Y., Adamyan L., Palicelli A. Malignant Clinical Course of “Proliferative” Ovarian Struma: Diagnostic Challenges and Treatment Pitfalls. Diagnostics. 2022;12:1411. doi: 10.3390/diagnostics12061411. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 144.Horowitz N.A., Al Wahad A.A., Bettman N.P., Ringelstein-Harlev S., Brenner B., Katz T. Acceleration of non-Hodgkin lymphoma progression during pregnancy in a murine model. Leuk. Lymphoma. 2024;65:1370–1373. doi: 10.1080/10428194.2024.2353879. [DOI] [PubMed] [Google Scholar]
- 145.Avilés A., Nambo M.J., Neri N. Treatment of Early Stages Hodgkin Lymphoma During Pregnancy. Mediterr. J. Hematol. Infect. Dis. 2018;10:e2018006. doi: 10.4084/mjhid.2018.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 146.Pohlman B., Macklis R.M. Lymphoma and pregnancy. Semin. Oncol. 2000;27:657–666. [PubMed] [Google Scholar]
- 147.Gao D.L., Fu Q.Q., Zhang T.T., Sun L., Pan Y., Zhai Q.L. Occurrence of lymphoma in non-gonadal organ during pregnancy: A report on four cases and literature review. Cancer Biol. Med. 2016;13:399–403. doi: 10.20892/j.issn.2095-3941.2016.0040. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 148.Evens A.M., Advani R., Press O.W., Lossos I.S., Vose J.M., Hernandez-Ilizaliturri F.J., Robinson B.K., Otis S., Nadav Dagan L., Abdallah R., et al. Lymphoma occurring during pregnancy: Antenatal therapy, complications, and maternal survival in a multicenter analysis. J. Clin. Oncol. 2013;31:4132–4139. doi: 10.1200/JCO.2013.49.8220. [DOI] [PubMed] [Google Scholar]
- 149.Jurczyszyn A., Olszewska-Szopa M., Vesole A.S., Vesole D.H., Siegel D.S., Richardson P.G., Paba-Prada C., Callander N.S., Huras H., Skotnicki A.B. Multiple Myeloma in Pregnancy—A Review of the Literature and a Case Series. Clin. Lymphoma Myeloma Leuk. 2016;16:e39–e45. doi: 10.1016/j.clml.2015.11.020. [DOI] [PubMed] [Google Scholar]
- 150.Steiner-Salz D., Yahalom J., Samuelov A., Polliack A. Non-Hodgkin’s lymphoma associated with pregnancy. A report of six cases, with a review of the literature. Cancer. 1985;56:2087–2091. doi: 10.1002/1097-0142(19851015)56:8<2087::AID-CNCR2820560834>3.0.CO;2-X. [DOI] [PubMed] [Google Scholar]
- 151.Maggen C., Dierickx D., Lugtenburg P., Laenen A., Cardonick E., Shmakov R.G., Bellido M., Cabrera-Garcia A., Gziri M.M., Halaska M.J., et al. Obstetric and maternal outcomes in patients diagnosed with Hodgkin lymphoma during pregnancy: A multicentre, retrospective, cohort study. Lancet Haematol. 2019;6:e551–e561. doi: 10.1016/S2352-3026(19)30195-4. [DOI] [PubMed] [Google Scholar]
- 152.Kato M., Ichimura K., Hayami Y., Iida S., Wakita A., Ueda R., Nakamura S. Pregnancy-associated cytotoxic lymphoma: A report of 4 cases. Int. J. Hematol. 2001;74:186–192. doi: 10.1007/BF02982003. [DOI] [PubMed] [Google Scholar]
- 153.Haas J.F. Pregnancy in association with a newly diagnosed cancer: A population-based epidemiologic assessment. Int. J. Cancer. 1984;34:229–235. doi: 10.1002/ijc.2910340214. [DOI] [PubMed] [Google Scholar]
- 154.Kościelecka K., Kubik-Machura D., Kuć A., Furmanek F., Męcik-Kronenberg T. Melanoma During Pregnancy as a Complicated Medical Problem. Obstet. Gynecol. Surv. 2023;78:115–123. doi: 10.1097/OGX.0000000000001109. [DOI] [PubMed] [Google Scholar]
- 155.Prithviraj P., Anaka M., McKeown S.J., Permezel M., Walkiewicz M., Cebon J., Behren A., Jayachandran A. Pregnancy associated plasma protein-A links pregnancy and melanoma progression by promoting cellular migration and invasion. Oncotarget. 2015;6:15953–15965. doi: 10.18632/oncotarget.3643. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 156.Likhvantseva V.G., Ovanesyan V.E. The effect of sex hormones and pregnancy on development and progression of uveal melanoma. Vestn. Oftalmol. 2022;138:110–117. doi: 10.17116/oftalma2022138031110. [DOI] [PubMed] [Google Scholar]
- 157.Pelczar P., Kosteczko P., Wieczorek E., Kwieciński M., Kozłowska A., Gil-Kulik P. Melanoma in Pregnancy-Diagnosis, Treatment, and Consequences for Fetal Development and the Maintenance of Pregnancy. Cancers. 2024;16:2173. doi: 10.3390/cancers16122173. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 158.Janik M.E., Bełkot K., Przybyło M. Is oestrogen an important player in melanoma progression? Contemp. Oncol. 2014;18:302–306. doi: 10.5114/wo.2014.43938. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 159.Erfurt-Berge C., Kaempgen E. Melanom und Schwangerschaft. Hautarzt. 2010;61:1040–1045. doi: 10.1007/s00105-010-2005-9. [DOI] [PubMed] [Google Scholar]
- 160.Daryanani D., Plukker J.T., De Hullu J.A., Kuiper H., Nap R.E., Hoekstra H.J. Pregnancy and early-stage melanoma. Cancer. 2003;97:2248–2253. doi: 10.1002/cncr.11321. [DOI] [PubMed] [Google Scholar]
- 161.Miller M., Schoenfield L., Abdel-Rahman M., Cebulla C.M. Is Uveal Melanoma a Hormonally Sensitive Cancer? A Review of the Impact of Sex Hormones and Pregnancy on Uveal Melanoma. Ocul. Oncol. Pathol. 2021;7:239–250. doi: 10.1159/000514650. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 162.Broggi G., Angelico G., Farina J., Tinnirello G., Barresi V., Zanelli M., Palicelli A., Certo F., Barbagallo G., Magro G., et al. Tumor-associated microenvironment, PD-L1 expression and their relationship with immunotherapy in glioblastoma, IDH-wild type: A comprehensive review with emphasis on the implications for neuropathologists. Pathol. Res. Pract. 2024;254:155144. doi: 10.1016/j.prp.2024.155144. [DOI] [PubMed] [Google Scholar]
- 163.Slingluff C.L., Jr., Seigler H.F. Malignant melanoma and pregnancy. Ann. Plast. Surg. 1992;28:95–99. doi: 10.1097/00000637-199201000-00024. [DOI] [PubMed] [Google Scholar]
- 164.Khosrotehrani K., Nguyen Huu S., Prignon A., Avril M.F., Boitier F., Oster M., Mortier L., Richard M.A., Maubec E., Kerob D., et al. Pregnancy promotes melanoma metastasis through enhanced lymphangiogenesis. Am. J. Pathol. 2011;178:1870–1880. doi: 10.1016/j.ajpath.2010.12.044. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 165.de Giorgi V., Gori A., Grazzini M., Rossari S., Scarfì F., Corciova S., Verdelli A., Lotti T., Massi D. Estrogens, estrogen receptors and melanoma. Expert. Rev. Anticancer Ther. 2011;11:739–747. doi: 10.1586/era.11.42. [DOI] [PubMed] [Google Scholar]
- 166.Nguyen B., Venet D., Azim H.A., Jr., Brown D., Desmedt C., Lambertini M., Majjaj S., Pruneri G., Peccatori F., Piccart M., et al. Breast cancer diagnosed during pregnancy is associated with enrichment of non-silent mutations, mismatch repair deficiency signature and mucin mutations. NPJ Breast Cancer. 2018;4:23. doi: 10.1038/s41523-018-0077-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 167.Broggi G., Failla M., Russo A., Longo A., Palicelli A., Zanelli M., Lombardo C., Loreto C., Merolla F., Di Crescenzo R.M., et al. Immunohistochemical expression of PRAME is a marker of poor prognosis in uveal melanoma: A clinico-pathologic and immunohistochemical study on a series of 85 cases. Pathol. Res. Pract. 2023;247:154543. doi: 10.1016/j.prp.2023.154543. [DOI] [PubMed] [Google Scholar]
- 168.Patrichi G., Beleaua M., Patrichi A., Molnar C., Molnar C., Palicelli A., Maloberti T., de Biase D., Soslow R., Stolnicu S. Late Recurrence of a Growing Teratoma Syndrome-Like Lesion in a 54-Year-Old Female Patient: A Follow-Up Case Report. Int. J. Surg. Pathol. 2025;33:1165–1168. doi: 10.1177/10668969241300495. [DOI] [PubMed] [Google Scholar]
- 169.Matsushita H., Arai K., Fukase M., Takayanagi T., Ikarashi H. Growing teratoma syndrome of the ovary after fertility-sparing surgery and successful pregnancy. Gynecol. Obstet. Investig. 2010;69:221–223. doi: 10.1159/000273205. [DOI] [PubMed] [Google Scholar]
- 170.Bonasoni M.P., Comitini G., Barbieri V., Palicelli A., Salfi N., Pilu G. Fetal Presentation of Mediastinal Immature Teratoma: Ultrasound, Autopsy and Cytogenetic Findings. Diagnostics. 2021;11:1543. doi: 10.3390/diagnostics11091543. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 171.Mamoon N., Mushtaq S., Akhter N., Aslam A., Chaudary A., Rashid M. Immature teratoma of the vulva with an inguinal lymph node metastasis: Report of a case and review of literature. Int. J. Gynecol. Pathol. 2010;29:197–200. doi: 10.1097/PGP.0b013e3181b8e73e. [DOI] [PubMed] [Google Scholar]
- 172.Pirgon O., Atabek M.E., Suleymanoglu S. Genital prolapse in a newborn following resection of sacrococcygeal teratoma. J. Pediatr. Adolesc. Gynecol. 2009;22:e96–e98. doi: 10.1016/j.jpag.2008.11.004. [DOI] [PubMed] [Google Scholar]
- 173.Ravishankar S., Malpica A., Ramalingam P., Euscher E.D. Yolk Sac Tumor in Extragonadal Pelvic Sites: Still a Diagnostic Challenge. Am. J. Surg. Pathol. 2017;41:1–11. doi: 10.1097/PAS.0000000000000722. [DOI] [PubMed] [Google Scholar]
- 174.Basgul A., Gokaslan H., Kavak Z.N., Eren F.T., Bozkurt N. Primary yolk sac tumor (endodermal sinus tumor) of the vulva: Case report and review of the literature. Eur. J. Gynaecol. Oncol. 2006;27:395–398. [PubMed] [Google Scholar]
- 175.Morris J.A., Campbell P., Xu L., O’Sullivan A.J. Cushing Syndrome due to Adrenocortical Carcinoma During Pregnancy. JCEM Case Rep. 2023;1:luad118. doi: 10.1210/jcemcr/luad118. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 176.Qiang X., Li Y., Bai Q., Huang J., Ma X., Wang W. Adrenocortical pheochromocytoma diagnosed during pregnancy: A case report. BMC Pregnancy Childbirth. 2023;23:527. doi: 10.1186/s12884-023-05844-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 177.Kong W., Qu Q., Zhang S. Recurrent paraganglioma of the vulva: A rare case report and review of the literature. Front. Oncol. 2022;12:961666. doi: 10.3389/fonc.2022.961666. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 178.Liu Y.Q., Yue J.Q. Paraganglioma of the vulva: A case report and review of the literature. Int. J. Clin. Exp. Pathol. 2013;6:2247–2250. [PMC free article] [PubMed] [Google Scholar]
- 179.Nuciforo P.G., Fraggetta F., Fasani R., Braidotti P., Nuciforo G. Neuroendocrine carcinoma of the vulva with paraganglioma-like features. Histopathology. 2004;44:304–306. doi: 10.1111/j.1365-2559.2004.01783.x. [DOI] [PubMed] [Google Scholar]
- 180.Melli B., Cusenza V.Y., Martinelli S., Castiglione F., Fornaciari L., Palicelli A., Braglia L., Farnetti E., Negro A., Rosato S., et al. Clinical exome next-generation sequencing panel for hereditary pheochromocytoma and paraganglioma diagnosis. Exp. Ther. Med. 2024;29:34. doi: 10.3892/etm.2024.12784. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 181.Nocarová L., Ondruš D. Cervical cancer in pregnancy. Klin. Onkol. 2020;33:268–273. doi: 10.14735/amko2020268. [DOI] [PubMed] [Google Scholar]
- 182.Perrone A.M., Bovicelli A., D’Andrilli G., Borghese G., Giordano A., De Iaco P. Cervical cancer in pregnancy: Analysis of the literature and innovative approaches. J. Cell. Physiol. 2019;234:14975–14990. doi: 10.1002/jcp.28340. [DOI] [PubMed] [Google Scholar]
- 183.Salani R., Billingsley C.C., Crafton S.M. Cancer and pregnancy: An overview for obstetricians and gynecologists. Am. J. Obstet. Gynecol. 2014;211:7–14. doi: 10.1016/j.ajog.2013.12.002. [DOI] [PubMed] [Google Scholar]
- 184.Thompson E.F., Hoang L., Höhn A.K., Palicelli A., Talia K.L., Tchrakian N., Senz J., Rusike R., Jordan S., Jamieson A., et al. Molecular subclassification of vulvar squamous cell carcinoma: Reproducibility and prognostic significance of a novel surgical technique. Int. J. Gynecol. Cancer. 2022;32:977–985. doi: 10.1136/ijgc-2021-003251. [DOI] [PubMed] [Google Scholar]
- 185.Akinlotan M., Bolin J.N., Helduser J., Ojinnaka C., Lichorad A., McClellan D. Cervical Cancer Screening Barriers and Risk Factor Knowledge Among Uninsured Women. J. Community Health. 2017;42:770–778. doi: 10.1007/s10900-017-0316-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 186.Zhao S., Huang L., Basu P., Domingo E.J., Supakarapongkul W., Ling W.Y., Ocviyanti D., Rezhake R., Qiao Y., Tay E.H., et al. Cervical cancer burden, status of implementation and challenges of cervical cancer screening in Association of Southeast Asian Nations (ASEAN) countries. Cancer Lett. 2022;525:22–32. doi: 10.1016/j.canlet.2021.10.036. [DOI] [PubMed] [Google Scholar]
- 187.Makhubo M.T., Naidoo T.D. Healthcare worker compliance with cervical cancer screening guidelines. An audit at district and regional level of care in the Pietermaritzburg Metropolitan area of KwaZulu-Natal. S. Afr. J. HIV Med. 2020;21:1104. doi: 10.4102/sajhivmed.v21i1.1104. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 188.Kuroki L.M., Massad L.S., Woolfolk C., Thompson T., McQueen A., Kreuter M.W. Cervical cancer risk and screening among women seeking assistance with basic needs. Am. J. Obstet. Gynecol. 2021;224 doi: 10.1016/j.ajog.2020.12.018. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 189.Farajimakin O. Barriers to Cervical Cancer Screening: A Systematic Review. Cureus. 2024;16:e65555. doi: 10.7759/cureus.65555. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 190.Rizzo G., Aloisio F., Bacigalupi A., Mappa I., Słodki M., Makatsarya A., D’Antonio F. Women’s compliance with ultrasound in labor: A prospective observational study. J. Matern. Fetal Neonatal Med. 2021;34:1454–1458. doi: 10.1080/14767058.2019.1638903. [DOI] [PubMed] [Google Scholar]
- 191.Usha Kiran T.S., Jayawickrama N.S. Who are the women who default from colposcopy clinics? J. Obstet. Gynaecol. 2002;22:537–539. doi: 10.1080/01443610000003717. [DOI] [PubMed] [Google Scholar]
- 192.Serati M., Uccella S., Laterza R.M., Salvatore S., Beretta P., Riva C., Bolis P.F. Natural history of cervical intraepithelial neoplasia during pregnancy. Acta Obstet. Gynecol. Scand. 2008;87:1296–1300. doi: 10.1080/00016340802482986. [DOI] [PubMed] [Google Scholar]
- 193.Jones W.B., Shingleton H.M., Russell A., Fremgen A.M., Clive R.E., Winchester D.P., Chmiel J.S. Cervical carcinoma and pregnancy. A national patterns of care study of the American College of Surgeons. Cancer. 1996;77:1479–1488. doi: 10.1002/(SICI)1097-0142(19960415)77:8<1479::AID-CNCR9>3.0.CO;2-7. [DOI] [PubMed] [Google Scholar]
- 194.Morice P., Narducci F., Mathevet P., Marret H., Darai E., Querleu D., French Working Group on Gynecological Cancers in Pregnancy. Société Française d’Oncologie Gynécologique (SFOG) Société Française de Chirurgie Pelvienne (SFCP) Collège National des Gynécologues Obstétriciens Français (CNGOF) French recommendations on the management of invasive cervical cancer during pregnancy. Int. J. Gynecol. Cancer. 2009;19:1638–1641. doi: 10.1111/IGC.0b013e3181a83017. [DOI] [PubMed] [Google Scholar]
- 195.Han S.N., Kesic V.I., Van Calsteren K., Petkovic S., Amant F., ESGO ‘Cancer in Pregnancy’ Task Force Cancer in pregnancy: A survey of current clinical practice. Eur. J. Obstet. Gynecol. Reprod. Biol. 2013;167:18–23. doi: 10.1016/j.ejogrb.2012.10.026. [DOI] [PubMed] [Google Scholar]
- 196.Hendriks E., MacNaughton H., MacKenzie M.C. First Trimester Bleeding: Evaluation and Management. Am. Fam. Physician. 2019;99:166–174. [PubMed] [Google Scholar]
- 197.Everett C. Incidence and outcome of bleeding before the 20th week of pregnancy: Prospective study from general practice. BMJ. 1997;315:32–34. doi: 10.1136/bmj.315.7099.32. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 198.Thorstensen K.A. Midwifery management of first trimester bleeding and early pregnancy loss. J. Midwifery Women’s Health. 2000;45:481–497. doi: 10.1016/S1526-9523(00)00071-4. [DOI] [PubMed] [Google Scholar]
- 199.Matar M., Yared G., Massaad C., Ghazal K. Vaginal bleeding during pregnancy: A retrospective cohort study assessing maternal and perinatal outcomes. J. Int. Med. Res. 2025;53:3000605251315349. doi: 10.1177/03000605251315349. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 200.Magann E.F., Cummings J.E., Niederhauser A., Rodriguez-Thompson D., McCormack R., Chauhan S.P. Antepartum bleeding of unknown origin in the second half of pregnancy: A review. Obstet. Gynecol. Surv. 2005;60:741–745. doi: 10.1097/01.ogx.0000182881.53139.f7. [DOI] [PubMed] [Google Scholar]
- 201.Fleury A.C., Birsner M.L., Fader A.N. Management of the abnormal Papanicolaou smear and colposcopy in pregnancy: An evidenced-based review. Minerva Ginecol. 2012;64:137–148. [PubMed] [Google Scholar]
- 202.Baldauf J.J., Dreyfus M., Ritter J., Philippe E. Colposcopy and directed biopsy reliability during pregnancy: A cohort study. Eur. J. Obstet. Gynecol. Reprod. Biol. 1995;62:31–36. doi: 10.1016/0301-2115(95)02178-A. [DOI] [PubMed] [Google Scholar]
- 203.Baldauf J.J., Dreyfus M., Ritter J. Benefits and risks of directed biopsy in pregnancy. J. Low. Genit. Tract. Dis. 1997;1:214–220. doi: 10.1097/00128360-199710000-00004. [DOI] [PubMed] [Google Scholar]
- 204.Yamazaki H., Mitamura T., Ihira K., Endo D., Sakurai M., Konno Y., Watari H. The difficulty to diagnose cervical cancer developing in the perinatal period with the first-trimester cytology: A retrospective study. J. Obstet. Gynaecol. Res. 2021;47:3303–3309. doi: 10.1111/jog.14882. [DOI] [PubMed] [Google Scholar]
- 205.Balan T.A., Balan R.A., Socolov D., Gheorghiță V.R., Buțureanu T.A., Păvăleanu I., Coșovanu E.T., Căruntu I.D. Pregnancy-Related Precancerous Cervical Lesions: Pathogenesis, Diagnosis, Evolution, and Impact upon Gestation and Fertility. J. Clin. Med. 2024;13:6718. doi: 10.3390/jcm13226718. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 206.Chen S.J., Liu Y.L., Sytwu H.K. Immunologic regulation in pregnancy: From mechanism to therapeutic strategy for immunomodulation. Clin. Dev. Immunol. 2012;2012:258391. doi: 10.1155/2012/258391. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 207.Zhang X., Nothnick W.B. The role and regulation of the uterine matrix metalloproteinase system in menstruating and non-menstruating species. Front. Biosci. 2005;10:353–366. doi: 10.2741/1533. [DOI] [PubMed] [Google Scholar]
- 208.Zhang G., Miyake M., Lawton A., Goodison S., Rosser C.J. Matrix metalloproteinase-10 promotes tumor progression through regulation of angiogenic and apoptotic pathways in cervical tumors. BMC Cancer. 2014;14:310. doi: 10.1186/1471-2407-14-310. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 209.Zemlickis D., Lishner M., Degendorfer P., Panzarella T., Sutcliffe S.B., Koren G. Maternal and fetal outcome after invasive cervical cancer in pregnancy. J. Clin. Oncol. 1991;9:1956Y61. doi: 10.1200/JCO.1991.9.11.1956. [DOI] [PubMed] [Google Scholar]
- 210.Hopkins M.P., Morley G.W. The prognosis and management of cervical cancer associated with pregnancy. Obstet. Gynecol. 1992;80:9–13. doi: 10.1016/0020-7292(93)90887-3. [DOI] [PubMed] [Google Scholar]
- 211.Lee J.M., Lee K.B., Kim Y.T., Ryu H.S., Kim Y.T., Cho C.H., Namkoong S.E., Lee K.H., Choi H.S., Kim K.T. Cervical cancer associated with pregnancy: Results of a multicenter retrospective Korean study (KGOG-1006) Am. J. Obstet. Gynecol. 2008;198:92. doi: 10.1016/j.ajog.2007.06.077. [DOI] [PubMed] [Google Scholar]
- 212.Creasman W.T., Rutledge F.N., Fletcher G.H. Carcinoma of the cervix associated with pregnancy. Obstet. Gynecol. 1970;36:495–501. [PubMed] [Google Scholar]
- 213.Donegan W.L. Cancer and pregnancy. CA Cancer J. Clin. 1983;33:194–214. doi: 10.3322/canjclin.33.4.194. [DOI] [PubMed] [Google Scholar]
- 214.Sood A.K., Sorosky J.I., Krogman S., Anderson B., Benda J., Buller R.E. Surgical management of cervical cancer complicating pregnancy: A case-control study. Gynecol. Oncol. 1996;64:294–298. doi: 10.1006/gyno.1996.0325. [DOI] [PubMed] [Google Scholar]
- 215.Sood A.K., Sorosky J.I., Mayr N., Krogman S., Anderson B., Buller R.E., Hussey D.H. Radiotherapeutic management of cervical carcinoma that complicates pregnancy. Cancer. 1997;80:1073–1078. doi: 10.1002/(SICI)1097-0142(19970915)80:6<1073::AID-CNCR9>3.0.CO;2-A. [DOI] [PubMed] [Google Scholar]
- 216.Mruzek H., Kacperczyk-Bartnik J., Dańska-Bidzińska A., Ciebiera M., Grabowska-Derlatka L., Derlatka P. Early-Stage and Locally Advanced Cervical Cancer during Pregnancy: Clinical Presentation, Diagnosis and Treatment. Medicina. 2024;60:1700. doi: 10.3390/medicina60101700. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 217.Coppola A., Sorosky J., Casper R., Anderson B., Buller R.E. The clinical course of cervical carcinoma in situ diagnosed during pregnancy. Gynecol. Oncol. 1997;67:162–165. doi: 10.1006/gyno.1997.4856. [DOI] [PubMed] [Google Scholar]
- 218.van Praagh I.G.L., Harvey M.H., Vernon C.P. Carcinoma of the cervix associated with pregnancy. J. Obstet. Gynaecol. Br. Commonw. 1965;72:75–80. doi: 10.1111/j.1471-0528.1965.tb01376.x. [DOI] [PubMed] [Google Scholar]
- 219.Bosch A., Marcial V.A. Carcinoma of the uterine cervix associated with pregnancy. Am. J. Roentgenol. 1966;96:92–99. doi: 10.2214/ajr.96.1.92. [DOI] [PubMed] [Google Scholar]
- 220.Nagelhout G., Ebisch R.M., Van Der Hel O., Meerkerk G.J., Magnée T., De Bruijn T., Van Straaten B. Is smoking an independent risk factor for developing cervical intra-epithelial neoplasia and cervical cancer? A systematic review and meta-analysis. Expert. Rev. Anticancer Ther. 2021;21:781–794. doi: 10.1080/14737140.2021.1888719. [DOI] [PubMed] [Google Scholar]
- 221.Sugawara Y., Tsuji I., Mizoue T., Inoue M., Sawada N., Matsuo K., Ito H., Naito M., Nagata C., Kitamura Y., et al. Cigarette smoking and cervical cancer risk: An evaluation based on a systematic review and meta-analysis among Japanese women. Jpn. J. Clin. Oncol. 2019;49:77–86. doi: 10.1093/jjco/hyy158. [DOI] [PubMed] [Google Scholar]
- 222.Kuokkanen S., Geraci S., Akerman M., Pal L. Pregnancy outcomes are compromised in obese women with PCOS after transfer of a single frozen-thawed euploid embryo. Fertil. Steril. Mar. 2025. in press . [DOI] [PubMed]
- 223.Jungles K.M., Green M.D. Fat fuels the fire in cervical cancer. Cancer Res. 2022;82:4513–4514. doi: 10.1158/0008-5472.CAN-22-3143. [DOI] [PubMed] [Google Scholar]
- 224.Wichmann I.A., Cuello M.A. Obesity and gynecological cancers: A toxic relationship. Int. J. Gynecol. Obstet. 2021;155((Suppl. S1)):123–134. doi: 10.1002/ijgo.13870. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 225.Cohn D.E., Swisher E.M., Herzog T.J., Rader J.S., Mutch D.G. Radical hysterectomy for cervical cancer in obese women. Obstet. Gynecol. 2000;96:727–731. doi: 10.1097/00006250-200011000-00015. [DOI] [PubMed] [Google Scholar]
- 226.Brunes M., Johannesson U., Häbel H., Söderberg M.W., Ek M. Effects of obesity on peri- and postoperative outcomes in patients undergoing robotic versus conventional hysterectomy. J. Minim. Invasive Gynecol. 2021;28:228–236. doi: 10.1016/j.jmig.2020.04.038. [DOI] [PubMed] [Google Scholar]
- 227.Clarke M.A., Befano B., Wentzensen N., Cheung L.C., Egemen D., Castle P.E., Schiffman M., Goldhoff P.E., Seo T.S., Suh-Burgmann E.J., et al. Associations of obesity with post-treatment risks of cervical precancer and cancer. Am. J. Obstet. Gynecol. 2024;233 doi: 10.1016/j.ajog.2024.12.002. [DOI] [PubMed] [Google Scholar]
- 228.Jiang X.Y., Zheng L., Xiong M., Wang S.L., Jin Q.Q., Yang Y.T., Fang Y.X., Hong L., Mei J., Zhou S.G. Body mass index and risk of female reproductive system tumors subtypes: A meta-analysis using mendelian randomization. Technol. Cancer Res. Treat. 2024;23:15330338241277699. doi: 10.1177/15330338241277699. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 229.Ji C., Liu S., Wang C., Chen J., Wang J., Zhang X., Ma J., Cai M. Relationship between visceral obesity and prognosis in patients with stage IVB cervical cancer receiving radiotherapy and chemotherapy. Cancer Pathog. Ther. 2023;2:180–186. doi: 10.1016/j.cpt.2023.09.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 230.Urbute A., Frederiksen K., Thomsen L.T., Kesmodel U.S., Kjaer S.K. Overweight and obesity as risk factors for cervical cancer and detection of precancers among screened women: A nationwide, population-based cohort study. Gynecol. Oncol. 2024;181:20–27. doi: 10.1016/j.ygyno.2023.12.002. [DOI] [PubMed] [Google Scholar]
- 231.Urbute A., Kjaer S.K., Kesmodel U.S., Frederiksen K., Thomsen L.T. Women with obesity participate less in cervical cancer screening and are more likely to have unsatisfactory smears: Results from a nationwide Danish cohort study. Prev. Med. 2022;159:107072. doi: 10.1016/j.ypmed.2022.107072. [DOI] [PubMed] [Google Scholar]
- 232.Rouzier R., Haddad B., Dubernard G., Dubois P., Paniel B.J. Inguinofemoral dissection for carcinoma of the vulva: Effect of modifications of extent and technique on morbidity and survival. J. Am. Coll. Surg. 2003;196:442–450. doi: 10.1016/S1072-7515(02)01895-1. [DOI] [PubMed] [Google Scholar]
- 233.Kirschner C.V., Yordan E.L., De Geest K., Wilbanks G.D. Smoking, obesity, and survival in squamous cell carcinoma of the vulva. Gynecol Oncol. 1995;56:79–84. doi: 10.1006/gyno.1995.1013. [DOI] [PubMed] [Google Scholar]
- 234.Ansink A.C., Heintz A.P. Epidemiology and etiology of squamous cell carcinoma of the vulva. Eur. J. Obstet. Gynecol. Reprod. Biol. 1993;48:111–115. doi: 10.1016/0028-2243(93)90250-G. [DOI] [PubMed] [Google Scholar]
- 235.Liu S., Song B., Liu D., Zheng C., Wu X., Wei Z., Chen X. Effects of labor induction in obesity with delayed pregnancy: A retrospective study based on Chinese obese primipara. Front. Endocrinol. 2023;13:1055098. doi: 10.3389/fendo.2022.1055098. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 236.Zizzo M., Morini A., Zanelli M., Grasselli C., Sanguedolce F., Wong S.L., Nyandoro M.G., Palicelli A., Broggi G., Koufopoulos N.I., et al. Impact of Obesity on Short-Term Outcomes in Patients Undergoing Retroperitoneal Laparoscopic/Retroperitoneoscopic Adrenalectomy for Benign or Malignant Adrenal Diseases: A Meta-Analysis. Medicina. 2025;61:106. doi: 10.3390/medicina61010106. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 237.Zizzo M., Morini A., Zanelli M., Grasselli C., Sanguedolce F., Palicelli A., Broggi G., Koufopoulos N.I., Mangone L., Nardecchia M., et al. Short-term outcomes in obese and non-obese patients undergoing transperitoneal laparoscopic adrenalectomy for benign or malignant adrenal diseases: An updated systematic review and meta-analysis. Chin. Clin. Oncol. 2024;13:67. doi: 10.21037/cco-24-55. [DOI] [PubMed] [Google Scholar]
- 238.Harper D.M., Paczos T., Ridder R., Huh W.K. p16/ki-67 dual stain triage of individuals positive for HPV to detect cervical precancerous lesions. Int. J. Cancer. 2025;156:2257–2264. doi: 10.1002/ijc.35353. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 239.Mailath-Pokorny M., Schwameis R., Grimm C., Reinthaller A., Polterauer S. Natural history of cervical intraepithelial neoplasia in pregnancy: Postpartum histopathologic outcome and review of the literature. BMC Pregnancy Childbirth. 2016;16:74. doi: 10.1186/s12884-016-0861-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 240.Uberti-Foppa C., Origoni M., Maillard M., Ferrari D., Ciuffreda D., Mastrorilli E., Lazzarin A., Lillo F. Evaluation of the detection of human papillomavirus genotypes in cervical specimens by hybrid capture as screening for precancerous lesions in HIV-positive women. J. Med. Virol. 1998;56:133–137. doi: 10.1002/(SICI)1096-9071(199810)56:2<133::AID-JMV6>3.0.CO;2-9. [DOI] [PubMed] [Google Scholar]
- 241.Origoni M., Stefani C., Gelardi C., Carminati G., Salvatore S., Candiani M. Worsening immunodeficiency correlates with increasing frequency of HPV-correlated cervical intraepithelial lesions in HIV-infected women. Int. J. Gynaecol. Obstet. 2012;24:174–180. [Google Scholar]
- 242.Seresini S., Origoni M., Caputo L., Lillo F., Longhi R., Vantini S., Paganoni A.M., Protti M.P. CD4+ T cells against human papillomavirus-18 E7 in patients with high-grade cervical lesions associate with the absence of the virus in the cervix. Immunology. 2010;131:89–98. doi: 10.1111/j.1365-2567.2010.03277.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 243.Seresini S., Origoni M., Lillo F., Caputo L., Paganoni A.M., Vantini S., Longhi R., Taccagni G., Ferrari A., Doglioni C., et al. IFN-gamma produced by human papilloma virus-18 E6-specific CD4+ T cells predicts the clinical outcome after surgery in patients with high-grade cervical lesions. J. Immunol. 2007;179:7176–7183. doi: 10.4049/jimmunol.179.10.7176. [DOI] [PubMed] [Google Scholar]
- 244.Origoni M., Stefani C., Dell’Antonio G., Carminati G., Parma M., Candiani M. Cervical Human Papillomavirus in transplanted Italian women: A long-term prospective follow-up study. J. Clin. Virol. 2011;51:250–254. doi: 10.1016/j.jcv.2011.05.017. [DOI] [PubMed] [Google Scholar]
- 245.Ho G.Y., Bierman R., Beardsley L., Chang C.J., Burk R.D. Natural history of cervicovaginal papillomavirus infection in young women. N. Engl. J. Med. 1998;338:423–428. doi: 10.1056/NEJM199802123380703. [DOI] [PubMed] [Google Scholar]
- 246.Romero R., Theis K.R., Gomez-Lopez N., Winters A.D., Panzer J.J., Lin H., Galaz J., Greenberg J.M., Shaffer Z., Kracht D.J., et al. The Vaginal Microbiota of Pregnant Women Varies with Gestational Age, Maternal Age, and Parity. Microbiol. Spectr. 2023;11:e0342922. doi: 10.1128/spectrum.03429-22. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 247.Bénard E.A., Carceller A.M., Mayrand M.H., Lacroix J., Niyibizi J., Laporte L., Comète E., Coutlée F., Trottier H., HERITAGE study group Viral Load of Human Papillomavirus (HPV) during pregnancy and its association with HPV vertical transmission. J. Med. Virol. 2025;97:e70221. doi: 10.1002/jmv.70221. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 248.Schiffman M., Castle P.E. Human Papillomavirus: Epidemiology and Public Health. Arch. Pathol. Lab. Med. 2003;127:8, 930–934. doi: 10.5858/2003-127-930-HPEAPH. [DOI] [PubMed] [Google Scholar]
- 249.Goggin F.C.P., Defay F., Lambert G., Mathieu-Chartier S., Gilca V., Sauvageau C. Virus du Papillome Humain, Santé Sexuelle et Reproductive Rapport de Recherche, D’étude ou D’analyse Inspq.qc.ca. Institut National de Santé Publique du Québec (INSPQ); Quebec, QC, Canada: 2016. [Google Scholar]
- 250.Bruni L., Diaz M., Castellsagué X., Ferrer E., Bosch F.X., de Sanjosé S. Cervical human papillomavirus prevalence in 5 continents: Meta-analysis of 1 million women with normal cytological findings. J. Infect. Dis. 2010;202:1789–1799. doi: 10.1086/657321. [DOI] [PubMed] [Google Scholar]
- 251.Mavilia M.G., Wu G.Y. Mechanisms and prevention of vertical transmission in chronic viral hepatitis. J. Clin. Transl. Hepatol. 2017;5:119–129. doi: 10.14218/JCTH.2016.00067. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 252.Khayargoli P., Mayrand M.H., Niyibizi J., Audibert F., Laporte L., Lacaille J., Carceller A.M., Lacroix J., Comète É., Coutlée F., et al. Association between Human Papillomavirus 16 viral load in pregnancy and preterm birth. Viruses. 2024;16:298. doi: 10.3390/v16020298. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 253.Datir S.G., Jaiswal A. Cervical cancer and its association with pregnancy. Cureus. 2024;16:e62144. doi: 10.7759/cureus.62144. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 254.Gomez Y., Balaya V., Lepigeon K., Mathevet P., Jacot-Guillarmod M. Predictive Factors Involved in Postpartum Regressions of Cytological/Histological Cervical High-Grade Dysplasia Diagnosed during Pregnancy. J. Clin. Med. 2021;10:5319. doi: 10.3390/jcm10225319. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 255.Jensen K.E., Schmiedel S., Norrild B., Frederiksen K., Iftner T., Kjaer S.K. Parity as a cofactor for high-grade cervical disease among women with persistent human papillomavirus infection: A 13-year follow-up. Br. J. Cancer. 2013;108:234–239. doi: 10.1038/bjc.2012.513. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 256.Luhn P., Walker J., Schiffman M., Zuna R.E., Dunn S.T., Gold M.A., Smith K., Mathews C., Allen R.A., Zhang R., et al. The role of co-factors in the progression from human papillomavirus infection to cervical cancer. Gynecol. Oncol. 2013;128:265–270. doi: 10.1016/j.ygyno.2012.11.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 257.Origoni M., Salvatore S., Perino A., Cucinella G., Candiani M. Cervical Intraepithelial Neoplasia (CIN) in pregnancy: The state of the art. Eur. Rev. Med. Pharmacol. Sci. 2014;18:851–860. [PubMed] [Google Scholar]
- 258.Barber H.R.K., Brunschwig A. Gynecologic cancer complicating pregnancy. Am. J. Obstet. Gynecol. 1963;85:156–164. doi: 10.1016/S0002-9378(16)35385-6. [DOI] [PubMed] [Google Scholar]
- 259.Bracic T., Reich O., Taumberger N., Tamussino K., Trutnovsky G. Does mode of delivery impact the course of cervical dysplasia in pregnancy? A review of 219 cases. Eur. J. Obstet. Gynecol. Reprod. Biol. 2022;274:13–18. doi: 10.1016/j.ejogrb.2022.05.002. [DOI] [PubMed] [Google Scholar]
- 260.Mitsuhashi A., Sekiya S. Loop electrosurgical excision procedure (LEEP) during first trimester of pregnancy. Int. J. Gynaecol. Obstet. 2000;71:237–239. doi: 10.1016/S0020-7292(99)00173-3. [DOI] [PubMed] [Google Scholar]
- 261.Korenaga T.K., Tewari K.S. Gynecologic cancer in pregnancy. Gynecol. Oncol. 2020;157:799–809. doi: 10.1016/j.ygyno.2020.03.015. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 262.Siristatidis C., Vitoratos N., Michailidis E., Syciotis C., Panagiotopoulos N., Kassanos D., Salamalekis E. The role of the mode of delivery in the alteration of intrapartum pathological cervical cytologic findings during the postpartum period. Eur. J. Gynaecol. Oncol. 2002;23:358–360. [PubMed] [Google Scholar]
- 263.Grimm D., Lang I., Prieske K., Jaeger A., Müller V., Kuerti S., Burandt E., Lezius S., Schmalfeldt B., Woelber L. Course of cervical intraepithelial neoplasia diagnosed during pregnancy. Arch. Gynecol. Obstet. 2020;301:1503–1512. doi: 10.1007/s00404-020-05518-1. [DOI] [PubMed] [Google Scholar]
- 264.Sun L., Herkanaidu P.K., Mohur P., Ramudoo J. Effect of Pregnancy on HPV Infection and on its Mode of Management. Med. J. Obstet. Gynecol. 2017;5:1099. [Google Scholar]
- 265.Burd E.M. Human papillomavirus and cervical cancer. Clin. Microbiol. Rev. 2003;16:1–17. doi: 10.1128/CMR.16.1.1-17.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 266.Sun H., Wang H., Liu Y., Xu H., Chen P., Sun X., Li M., Li P., Li K., Zheng L., et al. Comparison of the SureX® HPV genotyping test with the Digene Hybrid Capture® 2 test in cervical cancer screening. Front. Oncol. 2025;15:1627935. doi: 10.3389/fonc.2025.1627935. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 267.Contreras S.P., Lagos A.Q., Soto J.H., Vergara C.R., de la Barra Vivallos T., Islas E.E., Heredia S.M. Impact of HPV detection and p16-Ki67 expression on prognosis in anal cancer patients. Rev. Esp. Patol. 2025;58:100806. doi: 10.1016/j.patol.2025.100806. [DOI] [PubMed] [Google Scholar]
- 268.Querney J., Mendez A., Skinner J., Wihlidal J., Ramazani F., Biron V., Côté D. Prognostic role of p16 overexpression in sinonasal squamous cell carcinoma: A retrospective analysis of Alberta patients. World J. Otorhinolaryngol. Head Neck Surg. 2024;11:52–56. doi: 10.1002/wjo2.154. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 269.Zhou J., Tang M., Lin C., Chen W. The Value of P16 Protein Detection in the Screening for High-Grade Squamous Intraepithelial and Higher Lesions of the Cervix by the Combined Detection of HR-HPV and TCT. Diagn. Cytopathol. 2025;3:283–289. doi: 10.1002/dc.25461. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 270.Shin E., Choi J., Hung T.K.W., Poon C., Riaz N., Yu Y., Kang J.J. Prognosis of p16 and Human Papillomavirus Discordant Oropharyngeal Cancers and the Exploration of Using Natural Language Processing to Analyze Free-Text Pathology Reports. JCO Clin. Cancer Inform. 2025;9:e2400177. doi: 10.1200/CCI-24-00177. [DOI] [PubMed] [Google Scholar]
- 271.Sherief P.A., Madhavan Nair L., Ravikumar R., Sara George P., Cessal Thommachan K., Rafi M.S.L., Anantharaman D., M R.P., Ramadas K. Prevalence of HPV positivity and the correlation between P16INK4A expression and HPV DNA positivity in carcinoma oropharynx and their correlation with survival outcomes: A retrospective study from a tertiary cancer centre in south India. Cureus. 2025;17:e77162. doi: 10.7759/cureus.77162. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 272.Mills A.M., Pinto A. The Role of Predictive and Prognostic Biomarkers in Lower Female Genital Tract Pathology: PD-L1, MMR, HER2, p16, p53, and Beyond. Adv. Anat. Pathol. 2025;32:30–43. doi: 10.1097/PAP.0000000000000458. [DOI] [PubMed] [Google Scholar]
- 273.Xing Z., Danhua S., Xiaobo Z. Diagnostic validity of p16, E-cadherin, cyclin D1, p53, and HPV E6/E7 mRNA in CIN 3-like squamous cell carcinoma of the cervix. Front. Oncol. 2024;14:1354838. doi: 10.3389/fonc.2024.1354838. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 274.Dai Y., Chen T., Li X., Zhang C., Li T., Zhao Y., Wang Y., Chen S., Yu L., Jiang M., et al. Evaluation of the clinical performance of p16/Ki-67 dual-staining cytology for cervical lesion detection in premenopausal and postmenopausal Chinese women. J. Cancer Res. Clin. Oncol. 2023;149:10645–10658. doi: 10.1007/s00432-023-04938-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 275.Csizmár S., Výbohová D., Mešt’anová V., Krajňáková B., Kajo K., Kunertová L., Adamkov M. Expression of fascin in association with p16 and Ki-67 in cervical lesions: Immunohistochemical study. Pol. J. Pathol. 2022;73:208–214. doi: 10.5114/pjp.2022.124488. [DOI] [PubMed] [Google Scholar]
- 276.Aromseree S., Wongjumpa W., Ekalaksananan T., Temtanakitpaisan A., Kleebkaow P., Srisathaporn S., Tongchai P., Pientong C. P16/Ki-67 Dual Staining in Positive Human Papillomavirus DNA Testing for Predictive Diagnosis of Abnormal Cervical Lesions in Northeastern Thai Women. Asian Pac. J. Cancer Prev. 2022;23:3405–3411. doi: 10.31557/APJCP.2022.23.10.3405. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 277.Liu Y., McCluggage W.G., Darragh T.M., Farhat N., Blakely M., Sigel K., Zheng W., Westra W.H., Gaisa M.M. p16 Immunoreactivity correlates with morphologic diagnosis of HPV-associated anal intraepithelial neoplasia: A study of 1000 biopsies. Am. J. Surg. Pathol. 2021;45:1573–1578. doi: 10.1097/PAS.0000000000001769. [DOI] [PubMed] [Google Scholar]
- 278.Frankart A.J., Criss B.E., McKillip K.D., Wise-Draper T., Takiar V., Kharofa J. Assessing the Reliability and Positive Predictive Value of p16 as a Surrogate for Human Papillomavirus-Mediated E6/7 mRNA Expression in Squamous Cell Carcinoma of the Anal Canal. Dis. Colon Rectum. 2021;64:459–465. doi: 10.1097/DCR.0000000000001836. [DOI] [PubMed] [Google Scholar]
- 279.Chiesa-Vottero A.G., Malpica A., Deavers M.T., Broaddus R., Nuovo G.J., Silva E.G. Immunohistochemical overexpression of p16 and p53 in uterine serous carcinoma and ovarian high-grade serous carcinoma. Int. J. Gynecol. Pathol. 2007;26:328–333. doi: 10.1097/01.pgp.0000235065.31301.3e. [DOI] [PubMed] [Google Scholar]
- 280.Beirne J.P., McArt D.G., James J.A., Salto-Tellez M., Maxwell P., McCluggage W.G. p16 as a prognostic indicator in ovarian/tubal high-grade serous carcinoma. Histopathology. 2016;68:615–618. doi: 10.1111/his.12777. [DOI] [PubMed] [Google Scholar]
- 281.De Leo A., Santini D., Ceccarelli C., Santandrea G., Palicelli A., Acquaviva G., Chiarucci F., Rosini F., Ravegnini G., Pession A., et al. What Is New on Ovarian Carcinoma: Integrated Morphologic and Molecular Analysis Following the New 2020 World Health Organization Classification of Female Genital Tumors. Diagnostics. 2021;11:697. doi: 10.3390/diagnostics11040697. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 282.Kobelyatskaya A., Tregubova A., Palicelli A., Badlaeva A., Asaturova A. OVsignGenes: A Gene Expression-Based Neural Network Model Estimated Molecular Subtype of High-Grade Serous Ovarian Carcinoma. Cancers. 2024;16:3951. doi: 10.3390/cancers16233951. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 283.Phillips V., Kelly P., McCluggage W.G. Increased p16 expression in high-grade serous and undifferentiated carcinoma compared with other morphologic types of ovarian carcinoma. Int. J. Gynecol. Pathol. 2009;28:179–186. doi: 10.1097/PGP.0b013e318182c2d2. [DOI] [PubMed] [Google Scholar]
- 284.Marinaş M.C., Mogoş D.G., Simionescu C.E., Stepan A., Tănase F. The study of p53 and p16 immunoexpression in serous borderline and malignant ovarian tumors. Rom. J. Morphol. Embryol. 2012;53:1021–1025. [PubMed] [Google Scholar]
- 285.Badlaeva A., Tregubova A., Palicelli A., Asaturova A. Eosinophilic Cells in Ovarian Borderline Serous Tumors as a Predictor of BRAF Mutation. Cancers. 2024;16:2322. doi: 10.3390/cancers16132322. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 286.O’Neill C.J., McCluggage W.G. p16 expression in the female genital tract and its value in diagnosis. Adv. Anat. Pathol. 2006;13:8–15. doi: 10.1097/01.pap.0000201828.92719.f3. [DOI] [PubMed] [Google Scholar]
- 287.Koufopoulos N.I., Pouliakis A., Samaras M.G., Kotanidis C., Boutas I., Kontogeorgi A., Dimas D., Sitara K., Zacharatou A., Ieronimaki A.I., et al. Malignant Brenner Tumor of the Ovary: A Systematic Review of the Literature. Cancers. 2024;16:1106. doi: 10.3390/cancers16061106. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 288.Ribeiro E.A., Maleki Z. p16 immunostaining in cytology specimens: Its application, expression, interpretation, and challenges. J. Am. Soc. Cytopathol. 2021;10:414–422. doi: 10.1016/j.jasc.2020.12.003. [DOI] [PubMed] [Google Scholar]
- 289.Cabitza E., Pirola M., Baldessari C., Bernardelli G., Zunarelli E., Pipitone S., Vitale M.G., Nasso C., Molinaro E., Oltrecolli M., et al. Cerebellar metastasis of ovarian cancer: A case report. J. Med. Case Rep. 2023;17:553. doi: 10.1186/s13256-023-04211-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 290.Oliva E., Soslow R.A. High-Grade Endometrial Carcinomas. Surg. Pathol. Clin. 2011;4:199–241. doi: 10.1016/j.path.2010.12.008. [DOI] [PubMed] [Google Scholar]
- 291.Koufopoulos N., Pouliakis A., Boutas I., Samaras M.G., Kontogeorgi A., Dimas D., Sitara K., Zacharatou A., Zanelli M., Palicelli A. Axillary Lymph Node Metastasis from Ovarian Carcinoma: A Systematic Review of the Literature. J. Pers. Med. 2023;13:1532. doi: 10.3390/jpm13111532. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 292.Bates M., Mohamed B.M., Lewis F., O’Toole S., O’Leary J.J. Biomarkers in high grade serous ovarian cancer. Biochim Biophys Acta Rev Cancer. 2024;1879:189224. doi: 10.1016/j.bbcan.2024.189224. [DOI] [PubMed] [Google Scholar]
- 293.Yemelyanova A., Ji H., Shih I.e.M., Wang T.L., Wu L.S., Ronnett B.M. Utility of p16 expression for distinction of uterine serous carcinomas from endometrial endometrioid and endocervical adenocarcinomas: Immunohistochemical analysis of 201 cases. Am. J. Surg. Pathol. 2009;33:1504–1514. doi: 10.1097/PAS.0b013e3181ac35f5. [DOI] [PubMed] [Google Scholar]
- 294.Santandrea G., Piana S., Valli R., Zanelli M., Gasparini E., De Leo A., Mandato V.D., Palicelli A. Immunohistochemical Biomarkers as a Surrogate of Molecular Analysis in Ovarian Carcinomas: A Review of the Literature. Diagnostics. 2021;11:199. doi: 10.3390/diagnostics11020199. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 295.Wing-Cheuk Wong R., Palicelli A., Hoang L., Singh N. Interpretation of p16, p53 and mismatch repair protein immunohistochemistry in gynaecological neoplasia. Diagn. Histopathol. 2020;26:257–277. doi: 10.1016/j.mpdhp.2020.03.002. [DOI] [Google Scholar]
- 296.Sachdeva S., Suresh P.K., Basavaiah S.H., Sahu K.K., Sreeram S., Kini H., Kini J.R., Pinto A.C. p16 expression in urothelial carcinoma: Experience from a tertiary care center in coastal South India. J. Cancer Res. Ther. 2023;19:1330–1334. doi: 10.4103/jcrt.jcrt_1243_21. [DOI] [PubMed] [Google Scholar]
- 297.Steinestel J., Cronauer M.V., Müller J., Al Ghazal A., Skowronek P., Arndt A., Kraft K., Schrader M., Schrader A.J., Steinestel K. Overexpression of p16(INK4a) in urothelial carcinoma in situ is a marker for MAPK-mediated epithelial-mesenchymal transition but is not related to human papillomavirus infection. PLoS ONE. 2013;8:e65189. doi: 10.1371/journal.pone.0065189. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 298.Jackson C.L., Chen L., Hardy C.S., Ren K.Y., Visram K., Bratti V.F., Johnstone J., Sjödahl G., Siemens D.R., Gooding R.J., et al. Diagnostic and prognostic implications of a three-antibody molecular subtyping algorithm for non-muscle invasive bladder cancer. J. Pathol. Clin. Res. 2022;8:143–154. doi: 10.1002/cjp2.245. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 299.Sanguedolce F., Falagario U.G., Zanelli M., Palicelli A., Zizzo M., Ascani S., Tortorella S., Mancini V., Cormio A., Carrieri G., et al. Clinicopathological Features and Survival Analysis in Molecular Subtypes of Muscle-Invasive Bladder Cancer. Int. J. Mol. Sci. 2023;24:6610. doi: 10.3390/ijms24076610. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 300.Sanguedolce F., Zanelli M., Palicelli A., Ascani S., Zizzo M., Cocco G., Björnebo L., Lantz A., Landriscina M., Conteduca V., et al. Are We Ready to Implement Molecular Subtyping of Bladder Cancer in Clinical Practice? Part 2: Subtypes and Divergent Differentiation. Int. J. Mol. Sci. 2022;23:7844. doi: 10.3390/ijms23147844. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 301.Sanguedolce F., Zanelli M., Palicelli A., Ascani S., Zizzo M., Cocco G., Björnebo L., Lantz A., Falagario U.G., Cormio L., et al. Are We Ready to Implement Molecular Subtyping of Bladder Cancer in Clinical Practice? Part 1: General Issues and Marker Expression. Int. J. Mol. Sci. 2022;23:7819. doi: 10.3390/ijms23147819. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 302.Hammam O., Magdy M., Badawy M., Osili K.A., Kholy A.E., LeitHy T.E. Expression of MDM2 mRNA, MDM2, P53 and P16 Proteins in Urothelial Lesions in the View of the WHO 4th Edition Guidelines as a Molecular Insight towards Personalized Medicine. Open Access Maced. J. Med. Sci. 2017;5:578–586. doi: 10.3889/oamjms.2017.100. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 303.Buza N., Cohen P.J., Hui P., Parkash V. Inverse p16 and p63 expression in small cell carcinoma and high-grade urothelial cell carcinoma of the urinary bladder. Int. J. Surg. Pathol. 2010;18:94–102. doi: 10.1177/1066896909359914. [DOI] [PubMed] [Google Scholar]
- 304.Nakazawa K., Murata S., Yuminamochi T., Ishii Y., Ohno S., Nakazawa T., Kondo T., Katoh R. p16(INK4a) expression analysis as an ancillary tool for cytologic diagnosis of urothelial carcinoma. Am. J. Clin. Pathol. 2009;132:776–784. doi: 10.1309/AJCP61KNVHJVHAFN. [DOI] [PubMed] [Google Scholar]
- 305.Olkhov-Mitsel E., Hodgson A., Liu S.K., Vesprini D., Xu B., Downes M.R. Three-antibody classifier for muscle invasive urothelial carcinoma and its correlation with p53 expression. J. Clin. Pathol. 2022;75:766–771. doi: 10.1136/jclinpath-2021-207573. [DOI] [PubMed] [Google Scholar]
- 306.Sanguedolce F., Cormio A., Zanelli M., Palicelli A., Zizzo M., Falagario U.G., Mazzucchelli R., Galosi A.B., Carrieri G., Cormio L. Diagnostic workout of glandular malignant lesions of the bladder according to the 5th WHO classification. Crit. Rev. Clin. Lab. Sci. 2025;62:301–312. doi: 10.1080/10408363.2025.2464248. [DOI] [PubMed] [Google Scholar]
- 307.De Wispelaere N., Rico S.D., Bauer M., Luebke A.M., Kluth M., Büscheck F., Hube-Magg C., Höflmayer D., Gorbokon N., Weidemann S., et al. High prevalence of p16 staining in malignant tumors. PLoS ONE. 2022;17:e0262877. doi: 10.1371/journal.pone.0318271. Erratum in PLoS ONE 2025, 20, e0318271. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 308.Kjær S.K., Frederiksen K., Rasmussen C.L., Thomsen L.T., Madsen E.M., Franzmann M.B., Kjær A.K., Larsen L.G., Salinas N.V., Schledermann D., et al. Prognostic impact of p16 and high-risk HPV DNA in ~1300 patients with vulvar cancer. Int. J. Cancer. 2025;157:1354–1362. doi: 10.1002/ijc.35501. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 309.Lam A.K., Ong K., Giv M.J., Ho Y.H. p16 expression in colorectal adenocarcinoma: Marker of aggressiveness and morphological types. Pathology. 2008;40:580–585. doi: 10.1080/00313020802320713. [DOI] [PubMed] [Google Scholar]
- 310.Tada T., Watanabe T., Kazama S., Kanazawa T., Hata K., Komuro Y., Nagawa H. Reduced p16 expression correlates with lymphatic invasion in colorectal cancers. Hepatogastroenterology. 2003;50:1756–1760. [PubMed] [Google Scholar]
- 311.Powell A., Hodgson A., Cohen P.A., Rabban J.T., Park K.J., McCluggage W.G., Gilks C.B., Singh N., Oliva E., Contributors from the International Society of Gynecological Pathologists (ISGyP) Endocervical Adenocarcinoma Project Improved Risk Prediction in Human Papillomavirus-Associated Endocervical Adenocarcinoma Through Assessment of Binary Silva Pattern-based Classification: An International Multicenter Retrospective Observational Study Led by the International Society of Gynecological Pathologists (ISGyP) Int. J. Gynecol. Pathol. 2024;43:436–446. doi: 10.1097/PGP.0000000000001033. [DOI] [PubMed] [Google Scholar]
- 312.Chen M., Han L., Wang Y., Chen Y., Zheng A. Association between Silva pattern-based classification and endocervical adenocarcinoma: A systematic review and meta-analysis. Int. J. Gynecol. Cancer. 2024;34:1704–1710. doi: 10.1136/ijgc-2024-005639. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 313.Zeng C., Wu J.K., Lu X. Clinicopathological features and immunophenotype of Silva pattern system in endocervical adenocarcinoma. Int. J. Exp. Pathol. 2023;104:140–150. doi: 10.1111/iep.12470. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 314.Li X., Pang S., Shen Y., Qu P. Using Silva pattern system to predict prognosis and plan treatment of invasive endocervical adenocarcinoma: A single-center retrospective analysis. BMC Women’s Health. 2022;22:488. doi: 10.1186/s12905-022-02090-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 315.Stolnicu S., Hoang L., Almadani N., De Brot L., Baiocchi G., Bovolim G., Brito M.J., Karpathiou G., Ieni A., Guerra E., et al. Clinical correlation of lymphovascular invasion and Silva pattern of invasion in early-stage endocervical adenocarcinoma: Proposed binary Silva classification system. Pathology. 2022;54:548–554. doi: 10.1016/j.pathol.2022.01.007. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 316.Smith L.H., Danielsen B., Allen M.E., Cress R. Cancer associated with obstetric delivery: Results of linkage with the California cancer registry. Am. J. Obstet. Gynecol. 2003;189:1128–1135. doi: 10.1067/S0002-9378(03)00537-4. [DOI] [PubMed] [Google Scholar]
- 317.Wingo P.A., Tong T., Bolden S. Cancer statistics. CA Cancer J. Clin. 1995;45:8. doi: 10.3322/canjclin.45.1.8. [DOI] [PubMed] [Google Scholar]
- 318.Nguyen C., Montz F.J., Bristow R.E. Management of stage I cervical cancer in pregnancy. Obstet. Gynecol. Surv. 2000;55:633. doi: 10.1097/00006254-200010000-00022. [DOI] [PubMed] [Google Scholar]
- 319.Creasman W.T. Cancer and pregnancy. Ann. N. Y Acad. Sci. 2001;943:281. doi: 10.1111/j.1749-6632.2001.tb03809.x. [DOI] [PubMed] [Google Scholar]
- 320.Zhen S., Lu S., Zhang Q., Tian X. Progress in diagnosis and treatment of pregnancy complicated with cervical cancer. J. Pract. Med. 2018;25:400–402. [Google Scholar]
- 321.Brady H., Doubleday M., Gayo-Fung L.M., Hickman M., Khammungkhune S., Kois A., Lipps S., Pierce S., Richard N., Shevlin G., et al. Differential response of estrogen receptors alpha and beta to SP500263, a novel potent selective estrogen receptor modulator. Mol. Pharmacol. 2002;61:562–568. doi: 10.1016/S0026-895X(24)12119-0. [DOI] [PubMed] [Google Scholar]
- 322.Auborn K.J., Woodworth C., DiPaolo J.A., Bradlow H.L. The interaction between HPV infection and estrogen metabolism in cervical carcinogenesis. Int. J. Cancer. 1991;49:867–869. doi: 10.1002/ijc.2910490611. [DOI] [PubMed] [Google Scholar]
- 323.Matos A., Castelão C., Pereira da Silva A., Alho I., Bicho M., Medeiros R., Bicho M.C. Epistatic Interaction of CYP1A1 and COMT Polymorphisms in Cervical Cancer. Oxid. Med. Cell. Longev. 2016;2016:2769804. doi: 10.1155/2016/2769804. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 324.Ramachandran B. Functional association of oestrogen receptors with HPV infection in cervical carcinogenesis. Endocr. Relat. Cancer. 2017;24:R99–R108. doi: 10.1530/ERC-16-0571. [DOI] [PubMed] [Google Scholar]
- 325.Kanda N., Watanabe S. 17beta-estradiol stimulates the growth of human keratinocytes by inducing cyclin D2 expression. J. Investig. Dermatol. 2004;123:319–328. doi: 10.1111/j.0022-202X.2004.12645.x. [DOI] [PubMed] [Google Scholar]
- 326.Kanda N., Watanabe S. 17beta-estradiol inhibits oxidative stress-induced apoptosis in keratinocytes by promoting Bcl-2 expression. J. Investig. Dermatol. 2003;121:1500–1509. doi: 10.1111/j.1523-1747.2003.12617.x. [DOI] [PubMed] [Google Scholar]
- 327.Sanches M.M., Travassos A.R., Soares-de-Almeida L. A Relação Entre a Imunodepressão e o Desenvolvimento de Cancro Cutâneo. Acta Med. Port. 2017;30:69–72. doi: 10.20344/amp.7997. [DOI] [PubMed] [Google Scholar]
- 328.Molina T.J., Le Tourneau A., Damotte D., Diebold J., Audouin J. Pathologie hématologique et immunodépression en dehors de l’infection VIH: Modification de la séméiologie histopathologique. Ann. Pathol. 2008;28:S120–S121. doi: 10.1016/j.annpat.2008.09.041. [DOI] [PubMed] [Google Scholar]
- 329.Zanelli M., Sanguedolce F., Zizzo M., Ricci S., Bisagni A., Palicelli A., Fragliasso V., Donati B., Broggi G., Boutas I., et al. A Diagnostic Approach in Large B-Cell Lymphomas According to the Fifth World Health Organization and International Consensus Classifications and a Practical Algorithm in Routine Practice. Int. J. Mol. Sci. 2024;25:13213. doi: 10.3390/ijms252313213. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 330.McGee-Avila J.K., Argirion I., Engels E.A., O’Brien T.R., Horner M.J., Qiao B., Monterosso A., Luo Q., Shiels M.S. Risk of hepatocellular carcinoma in people with HIV in the United States, 2001–2019. J. Natl. Cancer Inst. 2024;116:61–68. doi: 10.1093/jnci/djad172. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 331.Zhang E.R., Pfeiffer R.M., Austin A., Clarke M.A., Hayes J., Horner M.J., Monterosso A., Pawlish K.S., Engels E.A., Shiels M.S. Impact of HIV on Anal Squamous Cell Carcinoma Rates in the United States, 2001–2015. J. Natl. Cancer Inst. 2022;114:1246–1252. doi: 10.1093/jnci/djac103. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 332.Zanelli M., Sanguedolce F., Zizzo M., Palicelli A., Bassi M.C., Santandrea G., Martino G., Soriano A., Caprera C., Corsi M., et al. Primary effusion lymphoma occurring in the setting of transplanted patients: A systematic review of a rare, life-threatening post-transplantation occurrence. BMC Cancer. 2021;21:468. doi: 10.1186/s12885-021-08215-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 333.Zhu Z., Zhang Y., Wang H., Jiang T., Zhang M., Zhang Y., Su B., Tian Y. Renal Cell Carcinoma Associated with HIV/AIDS: A Review of the Epidemiology, Risk Factors, Diagnosis, and Treatment. Front. Oncol. 2022;12:872438. doi: 10.3389/fonc.2022.872438. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 334.Hernández-Ramírez R.U., Qin L., Lin H., Leyden W., Neugebauer R.S., Althoff K.N., Achenbach C.J., Hessol N.A., D’Souza G., Gebo K.A., et al. Association of immunosuppression and HIV viraemia with non-Hodgkin lymphoma risk overall and by subtype in people living with HIV in Canada and the USA: A multicentre cohort study. Lancet HIV. 2019;6:e240–e249. doi: 10.1016/S2352-3018(18)30360-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 335.Brower V. Clues emerge on how HIV increases lymphoma risk. J. Natl. Cancer Inst. 2010;102:1002–1004. doi: 10.1093/jnci/djq274. [DOI] [PubMed] [Google Scholar]
- 336.Mohosho M.M. HIV prevalence in patients with cervical carcinoma: A cohort study at a secondary hospital in South Africa. Medicine. 2021;100:e27030. doi: 10.1097/MD.0000000000027030. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 337.Mahale P., Herr M.M., Engels E.A., Pfeiffer R.M., Shiels M.S. Autoimmune conditions and primary central nervous system lymphoma risk among older adults. Br. J. Haematol. 2020;188:516–521. doi: 10.1111/bjh.16222. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 338.Celada-Sendino M., Fernández-Cadenas F., Carballo-Folgoso L., Flórez-Díez P. Anal squamous cell carcinoma in HIV patients with HPV-16 condylomas: A serious complication in immunocompromised patients. Rev. Esp. Enferm. Dig. 2022;114:507–508. doi: 10.17235/reed.2022.8761/2022. [DOI] [PubMed] [Google Scholar]
- 339.Verhoef J. Transient immunodepression. J. Antimicrob. Chemother. 1990;26((Suppl. C)):23–29. doi: 10.1093/jac/26.suppl_C.23. [DOI] [PubMed] [Google Scholar]
- 340.Quéreux C., Hourdequin P., Saniez D., Rémy G. Pathologie du col et immunodépression. Contracept. Fertil. Sex. 1994;22:771–776. [PubMed] [Google Scholar]
- 341.Tiwari D., Bose P.D., Sultana R., Das C.R., Bose S. Preterm delivery and associated negative pregnancy outcome—A tale of faulty progesterone receptor signalling pathway and linked derailed immunomodulation: A study from Northeast India. J. Reprod. Immunol. 2016;118:76–84. doi: 10.1016/j.jri.2016.10.001. [DOI] [PubMed] [Google Scholar]
- 342.Zhao H., Ozen M., Wong R.J., Stevenson D.K. Heme oxygenase-1 in pregnancy and cancer: Similarities in cellular invasion, cytoprotection, angiogenesis, and immunomodulation. Front. Pharmacol. 2015;5:295. doi: 10.3389/fphar.2014.00295. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 343.Hyder S.M., Stancel G.M. Regulation of angiogenic growth factors in the female reproductive tract by estrogens and progestins. Mol. Endocrinol. 1999;13:806–811. doi: 10.1210/mend.13.6.0308. [DOI] [PubMed] [Google Scholar]
- 344.Nicheperovich A., Schuster-Böckler B., Ní Leathlobhair M. Gestational trophoblastic disease: Understanding the molecular mechanisms of placental tumours. Dis. Model. Mech. 2025;18:DMM052010. doi: 10.1242/dmm.052010. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 345.Gupta N., Graham L., Carpenter M., Gandhi G.Y. A Case of Metastatic Choriocarcinoma-Related Paraneoplastic Thyroid Storm. JCEM Case Rep. 2024;2:luae019. doi: 10.1210/jcemcr/luae019. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 346.Tong C.V., Chai W.L. Choriocarcinoma as a cause of hyperthyroidism. QJM Int. J. Med. 2017;110:187. doi: 10.1093/qjmed/hcw201. [DOI] [PubMed] [Google Scholar]
- 347.Subang M.L.L., Konig M., Staats P.N., Lamos E.M., Munir K.M., Malek R.M. Third-Trimester intraplacental choriocarcinoma presenting with respiratory failure and hyperthyroidism. AACE Clin. Case Rep. 2016;2:e233–e236. doi: 10.4158/EP15852.CR. [DOI] [Google Scholar]
- 348.Saleem M., Sethi S.M., Ali A., Kiran Z. Metastatic choriocarcinoma in a young woman presenting as thyroid storm: A case report. J. Med. Case Rep. 2021;15:519. doi: 10.1186/s13256-021-03123-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 349.Meister L.H., Hauck P.R., Graf H., Carvalho G.A. Hyperthyroidism due to secretion of human chorionic gonadotropin in a patient with metastatic choriocarcinoma. Arq. Bras. Endocrinol. Metabol. 2005;49:319–322. doi: 10.1590/S0004-27302005000200022. [DOI] [PubMed] [Google Scholar]
- 350.Fang Y., Chen H., Chen Q., Wang C., Liang L. Compound hemizygous variants in SERPINA7 gene cause thyroxine-binding globulin deficiency. Mol. Genet. Genom. Med. 2021;9:e1571. doi: 10.1002/mgg3.1571. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 351.Moore-Maxwell C.A., Robboy S.J. Placental site trophoblastic tumor arising from antecedent molar pregnancy. Gynecol. Oncol. 2004;92:708–712. doi: 10.1016/j.ygyno.2003.10.048. [DOI] [PubMed] [Google Scholar]
- 352.Hershman J.M. Physiological and pathological aspects of the effect of human chorionic gonadotropin on the thyroid. Best Pract. Res. Clin. Endocrinol. Metab. 2004;18:249–265. doi: 10.1016/j.beem.2004.03.010. [DOI] [PubMed] [Google Scholar]
- 353.Kumar P., Magon N. Hormones in pregnancy. Niger. Med. J. 2012;53:179–183. doi: 10.4103/0300-1652.107549. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 354.Refetoff S. Thyroid Hormone Serum Transport Proteins. 10 March 2023. In: Feingold K.R., Anawalt B., Blackman M.R., Boyce A., Chrousos G., Corpas E., de Herder W.W., et al., editors. Endotext [Internet] MDText.com, Inc.; South Dartmouth, MA, USA: 2000. [Google Scholar]
- 355.Szkudlinski M.W. New Frontier in Glycoprotein Hormones and Their Receptors Structure-Function. Front. Endocrinol. 2015;6:155. doi: 10.3389/fendo.2015.00155. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 356.Ząbczyńska M., Kozłowska K., Pocheć E. Glycosylation in the Thyroid Gland: Vital Aspects of Glycoprotein Function in Thyrocyte Physiology and Thyroid Disorders. Int. J. Mol. Sci. 2018;19:2792. doi: 10.3390/ijms19092792. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 357.Betz D., Fane K. StatPearls [Internet] StatPearls Publishing; Treasure Island, FL, USA: 2025. Human Chorionic Gonadotropin. 14 August 2023. [PubMed] [Google Scholar]
- 358.Voigt W., Maher G., Wolf H.-H., Schmoll H.J. Human chorionic gonadotropin-induced hyperthyroidism in germ cell cancer—A case presentation and review of the literature. Oncol. Res. Treat. 2007;30:330–334. doi: 10.1159/000101524. [DOI] [PubMed] [Google Scholar]
- 359.Derakhshani P., Klotz T., Heidenreich A., Engelmann U. Diffuse metastasized testicular teratoma and paraneoplastic thyreotoxicosis. Case report and literature review. Urol. Int. 1999;63:265–267. doi: 10.1159/000030466. [DOI] [PubMed] [Google Scholar]
- 360.Oosting S.F., de Haas E.C., Links T.P., de Bruin D., Sluiter W.J., de Jong I.J., Hoekstra H.J., Sleijfer D.T., Gietema J.A. Prevalence of paraneoplastic hyperthyroidism in patients with metastatic non-seminomatous germ-cell tumors. Ann. Oncol. 2010;21:104–108. doi: 10.1093/annonc/mdp265. [DOI] [PubMed] [Google Scholar]
- 361.Yoshimura M., Pekary A.E., Pang X.P., Berg L., Goodwin T.M., Hershman J.M. Thyrotropic activity of basic isoelectric forms of human chorionic gonadotropin extracted from hydatidiform mole tissues. J. Clin. Endocrinol. Metab. 1994;78:862–866. doi: 10.1210/jcem.78.4.8157712. [DOI] [PubMed] [Google Scholar]
- 362.Glinoer D., Lemone M. Goiter and pregnancy: A new insight into an old problem. Thyroid. 1992;2:65–70. doi: 10.1089/thy.1992.2.65. [DOI] [PubMed] [Google Scholar]
- 363.Glinoer D. Thyroid hyperfunction during pregnancy. Thyroid. 1998;8:859–864. doi: 10.1089/thy.1998.8.859. [DOI] [PubMed] [Google Scholar]
- 364.Goodwin T.M., Montoro M., Mestman J.H., Pekary A.E., Hershman J.M. The role of chorionic gonadotropin in transient hyperthyroidism of hyperemesis gravidarum. J. Clin. Endocrinol. Metab. 1992;75:1333–1337. doi: 10.1210/jcem.75.5.1430095. [DOI] [PubMed] [Google Scholar]
- 365.Walkington L., Webster J., Hancock B.W., Everard J., Coleman R.E. Hyperthyroidism and human chorionic gonadotrophin production in gestational trophoblastic disease. Br. J. Cancer. 2011;104:1665–1669. doi: 10.1038/bjc.2011.139. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 366.Sotello D., Rivas A.M., Test V.J., Lado-Abeal J. Choriocarcinoma presenting with thyrotoxicosis. Bayl. Univ. Med. Cent. Proc. 2016;29:42–43. doi: 10.1080/08998280.2016.11929353. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 367.Glinoer D. The regulation of thyroid function in pregnancy: Pathways of endocrine adaptation from physiology to pathology. Endocr. Rev. 1997;18:404–433. doi: 10.1210/edrv.18.3.0300. [DOI] [PubMed] [Google Scholar]
- 368.Khomphaiboonkij U., Termsarasab C. Can Pretreatment Serum Beta-hCG be Used for Predicting Thyrotoxicosis in Gestational Trophoblastic Disease? Asian Pac. J. Cancer Prev. 2021;22:3461–3465. doi: 10.31557/APJCP.2021.22.11.3461. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 369.Yeo C.P., Khoo D.H., Eng P.H., Tan H.K., Yo S.L., Jacob E. Prevalence of gestational thyrotoxicosis in Asian women evaluated in the 8th to 14th weeks of pregnancy: Correlations with total and free beta human chorionic gonadotrophin. Clin. Endocrinol. 2001;55:391–398. doi: 10.1046/j.1365-2265.2001.01353.x. [DOI] [PubMed] [Google Scholar]
- 370.Chivukula K.K., Toro-Tobón D., Motazedi B., Goyal R. Thyroid storm as an early presentation of hCG-producing metastatic choriocarcinoma: A case report and review of the literature. BMJ Case Rep. 2021;14:e242868. doi: 10.1136/bcr-2021-242868. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 371.Zygmunt M., Herr F., Münstedt K., Lang U., Liang O.D. Angiogenesis and vasculogenesis in pregnancy. Eur. J. Obstet. Gynecol. Reprod. Biol. 2003;110((Suppl. S1)):S10–S18. doi: 10.1016/S0301-2115(03)00168-4. [DOI] [PubMed] [Google Scholar]
- 372.Zygmunt M., Herr F., Keller-Schönwetter S., Kunzi-Rapp K., Rao C.V., Lang U., Preissner K.T. Human chorionic gonadotropin (hCG) is an angiogenetic factor for uterine endothelial cells in vitro. J. Clin. Endocrinol. Metab. 2002;87:5290–5296. doi: 10.1210/jc.2002-020642. [DOI] [PubMed] [Google Scholar]
- 373.Badlaeva A., Tregubova A., Asaturova A., Melli B., Cusenza V.Y., Palicelli A. Hyperthyroidism Associated with Gestational Trophoblastic Neoplasia: Systematic Literature Review and Pathways Analysis. Cancers. 2025;17:1398. doi: 10.3390/cancers17091398. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 374.Beharee N., Shi Z., Wu D., Wang J. Diagnosis and treatment of cervical cancer in pregnant women. Cancer Med. 2019;8:5425–5430. doi: 10.1002/cam4.2435. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 375.Meihao O.G. The effect of pregnancy with cervical cancer on mother and child and the principle of diagnosis and treatment. Adv. Mod. Obstet. Gynecol. 2008;17:64–66. [Google Scholar]
- 376.Hannigan E.V. Cervical cancer in pregnancy. Clin. Obstet. Gynecol. 1990;33:837–845. doi: 10.1097/00003081-199012000-00019. [DOI] [PubMed] [Google Scholar]
- 377.Chen Y., Wan G., Li Z., Liu X., Zhao Y., Zou L., Liu W. Endothelial progenitor cells in pregnancy-related diseases. Clin. Sci. 2023;137:1699–1719. doi: 10.1042/CS20230853. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 378.Fagiani E., Lorentz P., Bill R., Pavotbawan K., Kopfstein L., Christofori G. VEGF receptor-2-specific signaling mediated by VEGF-E induces hemangioma-like lesions in normal and in malignant tissue. Angiogenesis. 2016;19:339–358. doi: 10.1007/s10456-016-9508-7. [DOI] [PubMed] [Google Scholar]
- 379.Laakkonen J.P., Lähteenvuo J., Jauhiainen S., Heikura T., Ylä-Herttuala S. Beyond endothelial cells: Vascular endothelial growth factors in heart, vascular anomalies and placenta. Vasc. Pharmacol. 2019;112:91–101. doi: 10.1016/j.vph.2018.10.005. [DOI] [PubMed] [Google Scholar]
- 380.Chang E.I., Chang E.I., Thangarajah H., Hamou C., Gurtner G.C. Hypoxia, hormones, and endothelial progenitor cells in hemangioma. Lymphat. Res. Biol. 2007;5:237–243. doi: 10.1089/lrb.2007.1014. [DOI] [PubMed] [Google Scholar]
- 381.Webb S.D., Bonasoni M.P., Palicelli A., Comitini G., Heller D.S. Mixed chorangioma and leiomyoma of the placenta, with a brief review of nontrophoblastic placental lesions. Pediatr. Dev. Pathol. 2022;25:316–320. doi: 10.1177/10935266211047775. [DOI] [PubMed] [Google Scholar]
- 382.Folkman J., Klagsbrun M. Angiogenic factors. Science. 1987;235:442–447. doi: 10.1126/science.2432664. [DOI] [PubMed] [Google Scholar]
- 383.Reynolds L.P., Killilea S.D., Redmer D.A. Angiogenesis in the female reproductive system. Fed. Am. Soc. Exp. Biol. J. 1992;6:886–892. doi: 10.1096/fasebj.6.3.1371260. [DOI] [PubMed] [Google Scholar]
- 384.Torry R.J. Rongish angiogenesis in the uterus: Potential regulation and relation to tumor angiogenesis. Am. J. Reprod. Immunol. 1992;27:171–179. doi: 10.1111/j.1600-0897.1992.tb00746.x. [DOI] [PubMed] [Google Scholar]
- 385.Zygmunt M., Mazzuca D., Han V. Human chorionic gonadotropin (hCG) induces VEGF expression in vitro. Placenta. 2000;31:A23. [Google Scholar]
- 386.Rizzi A., Benagiano V., Ribatti D. Angiogenesis versus arteriogenesis. Rom. J. Morphol. Embryol. 2017;58:15–19. [PubMed] [Google Scholar]
- 387.Herr F., Liang O.D., Herrero J., Lang U., Preissner K.T., Han V.K., Zygmunt M. Possible angiogenic roles of insulin-like growth factor II and its receptors in uterine vascular adaptation to pregnancy. J. Clin. Endocrinol. Metab. 2003;88:4811–4817. doi: 10.1210/jc.2003-030243. [DOI] [PubMed] [Google Scholar]
- 388.O’Connell M.P., Jenkins D.M., Curtain A.W., Hughes P.A., Doyle J. Benign cervical leiomyoma leading to disseminated fatal malignancy. Gynecol. Oncol. 1996;62:119–122. doi: 10.1006/gyno.1996.0200. [DOI] [PubMed] [Google Scholar]
- 389.Sheu B.C., Lien H.C., Ho H.N., Lin H.H., Chow S.N., Huang S.C., Hsu S.M. Increased expression and activation of gelatinolytic matrix metalloproteinases is associated with the progression and recurrence of human cervical cancer. Cancer Research. 2003;63:6537–6542. [PubMed] [Google Scholar]
- 390.Mahendroo M. Cervical remodeling in term and preterm birth: Insights from an animal model. Reproduction. 2012;143:429–438. doi: 10.1530/REP-11-0466. [DOI] [PubMed] [Google Scholar]
- 391.Ito T.K., Ishii G., Chiba H., Ochiai A. The VEGF angiogenic switch of fibroblasts is regulated by MMP-7 from cancer cells. Oncogene. 2007;26:7194–7203. doi: 10.1038/sj.onc.1210535. [DOI] [PubMed] [Google Scholar]
- 392.Read C.P., Word R.A., Ruscheinsky M.A., Timmons B.C., Mahendroo M.S. Cervical remodeling during pregnancy and parturition: Molecular characterization of the softening phase in mice. Reproduction. 2007;13:4327–4340. doi: 10.1530/REP-07-0032. [DOI] [PubMed] [Google Scholar]
- 393.Mandic A., Maricic S., Malenkovic G., Stojic I., Gutic B. Neoadjuvant chemotherapy in locally advanced cervical cancer in pregnancy-Review of the literature. J. BUON. 2020;25:597–604. [PubMed] [Google Scholar]
- 394.Rosas I.O., Richards T.J., Konishi K., Zhang Y., Gibson K., Lokshin A.E., Lindell K.O., Cisneros J., Macdonald S.D., Pardo A., et al. MMP1 and MMP7 as potential peripheral blood biomarkers in idiopathic pulmonary fibrosis. PLoS Med. 2008;5:e93. doi: 10.1371/journal.pmed.0050093. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 395.Amabebe E., Ogidi H., Anumba D.O. Matrix metalloproteinase-induced cervical extracellular matrix remodelling in pregnancy and cervical cancer. Reprod. Fertil. 2022;3:R177–R191. doi: 10.1530/RAF-22-0015. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 396.Quintero-Fabián S., Arreola R., Becerril-Villanueva E., Torres-Romero J.C., Arana-Argáez V., Lara-Riegos J., Ramírez-Camacho M.A., Alvarez-Sánchez M.E. Role of matrix metalloproteinases in angiogenesis and cancer. Front. Oncol. 2019;9:1370. doi: 10.3389/fonc.2019.01370. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 397.Chen W., Huang S., Shi K., Yi L., Liu Y., Liu W. Prognostic role of matrix metalloproteinases in cervical cancer: A meta-analysis. Cancer Control. 2021;28:10732748211033743. doi: 10.1177/10732748211033743. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 398.Geng J., Huang C., Jiang S. Roles and regulation of the matrix metalloproteinase system in parturition. Mol. Reprod. Dev. 2016;83:276–286. doi: 10.1002/mrd.22626. [DOI] [PubMed] [Google Scholar]
- 399.Word R.A., Li X.H., Hnat M., Carrick K. Dynamics of cervical remodeling during pregnancy and parturition: Mechanisms and current concepts. Semin. Reprod. Med. 2007;25:69–79. doi: 10.1055/s-2006-956777. [DOI] [PubMed] [Google Scholar]
- 400.Ye S. Putative targeting of matrix metalloproteinase-8 in atherosclerosis. Pharmacol. Ther. 2005;147:111–122. doi: 10.1016/j.pharmthera.2014.11.007. [DOI] [PubMed] [Google Scholar]
- 401.Timmons B., Akins M., Mahendroo M. Cervical remodeling during pregnancy and parturition. Trends Endocrinol. Metab. 2010;21:353–361. doi: 10.1016/j.tem.2010.01.011. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 402.Vazquez-Ortiz G., Pina-Sanchez P., Vazquez K., Duenas A., Taja L., Mendoza P., Garcia J.A., Salcedo M. Overexpression of cathepsin F, matrix metalloproteinases 11 and 12 in cervical cancer. BMC Cancer. 2005;5:68. doi: 10.1186/1471-2407-5-68. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 403.Zhu L., Zheng X., Du Y., Xing Y., Xu K., Cui L. Matrix metalloproteinase-7 may serve as a novel biomarker for cervical cancer. Onco Targets Ther. 2018;11:4207–4220. doi: 10.2147/OTT.S160998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 404.Libra M., Scalisi A., Vella N., Clementi S., Sorio R., Stivala F., Spandidos D.A., Mazzarino C. Uterine cervical carcinoma: Role of matrix metalloproteinases (review) Int. J. Oncol. 2009;34:897–903. doi: 10.3892/ijo_00000215. [DOI] [PubMed] [Google Scholar]
- 405.Hart I.R. “Seed and soil” revisited: Mechanisms of site-specific metastasis. Cancer Metastasis Rev. 1982;1:5–16. doi: 10.1007/BF00049477. [DOI] [PubMed] [Google Scholar]
- 406.Greenlee R.M., Chervenak F.A., Tovell H.M. Incisional recur-rence of a cervical carcinoma. Report of a case. JAMA. 1981;246:69. doi: 10.1001/jama.1981.03320010049032. [DOI] [PubMed] [Google Scholar]
- 407.Abdullah A., Seagle B.L., Bautista E., Hansra B.S., Samuelson R., Shahabi S. Vulvar metastasis of an early-stage well-differentiated endometrial cancer after minimally invasive surgery. J. Minim. Invasive Gynecol. 2014;21:708–711. doi: 10.1016/j.jmig.2014.01.026. [DOI] [PubMed] [Google Scholar]
- 408.Snyder R.R., Hammond T.L., Hankins G.D. Human papillomavirus associated with poor healing of episiotomy repairs. Obstet. Gynecol. 1990;76:664–667. [PubMed] [Google Scholar]
- 409.Hino Y., Yamada Y., Miura S., Okada F., Uchiyama T., Mabuchi S. Clitoral metastasis from uterine cervical cancer: A case report and review of the literature. Gynecol. Oncol. Rep. 2020;33:100591. doi: 10.1016/j.gore.2020.100591. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 410.Deng Z., Li W., Tang X., Zhao B., Li J., Rang Z., Yang G., Liu W., Cui F. Vulvar skin metastasis from cervical adenocarcinoma. Am. J. Dermatopathol. 2024;46:852–854. doi: 10.1097/DAD.0000000000002846. [DOI] [PubMed] [Google Scholar]
- 411.Liao Z.L., Wang K.N., Zhang J.W. Case report: Vulvar metastasis after lung metastasis in cervical squamous cell carcinoma, a case report and literature review. Int. J. Surg. Case Rep. 2025;127:110816. doi: 10.1016/j.ijscr.2025.110816. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 412.Agarwal U., Dahiya P., Chauhan A., Sangwan K., Purwar P. Scalp metastasis in carcinoma of the uterine cervix—A rare entity. Gynecol. Oncol. Dec. 2002;87:310–312. doi: 10.1006/gyno.2002.6829. [DOI] [PubMed] [Google Scholar]
- 413.Srivastava K., Singh S., Srivastava M., Srivastava A.N. Incisional skin metastasis of a squamous cell cervical carcinoma 3.5 years after radical treatment—A case report. Int. J. Gynecol. Cancer. 2005;15:1183–1186. doi: 10.1136/ijgc-00009577-200511000-00035. [DOI] [PubMed] [Google Scholar]
- 414.Deka D., Gupta N., Bahadur A., Dadhwal V., Mittal S. Umbilical surgical scar and vulval metastasis secondary to advanced cervical squamous cell carcinoma: A report of two cases. Arch. Gynecol. Obstet. 2010;281:761–764. doi: 10.1007/s00404-009-1235-5. [DOI] [PubMed] [Google Scholar]
- 415.Grabiec M., Walentowicz M., Marszałek A. Multiple skin metastases to vulva from carcinoma of the cervical stump. Ginekol. Pol. 2010;81:140–143. [PubMed] [Google Scholar]
- 416.Kim W.J., Park H.J., Kim H.S., Kim S.H., Ko H.C., Kim B.S., Kim M.B. Vulval metastasis from squamous cell carcinoma of the cervix clinically presenting as lymphangioma circumscriptum. Ann. Dermatol. 2011;23((Suppl. S1)):S64–S67. doi: 10.5021/ad.2011.23.S1.S64. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 417.Richmond N.A., Viera M.H., Velazquez-Vega J., Kerdel F.A. Cutaneous metastasis of cervical adenocarcinoma to the vulva. Dermatol. Online J. 2013;19:18172. doi: 10.5070/D3195018172. [DOI] [PubMed] [Google Scholar]
- 418.Naswa S., Marfatia Y.S. Metastatic fungating ulcerative growth on vulva as a presenting feature of carcinoma cervix: A rare case report. Indian J. Dermatol. 2015;60:600–602. doi: 10.4103/0019-5154.169134. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 419.Zcan H.C., Mustafa A., Bozdağ Z., Sucu S., Uğur M.G., Balat Ö. Early vulvar and umbilical incisional scar recurrence of cervical squamous cell carcinoma: Earlier than usually expected. Turk. J. Obstet. Gynecol. 2017;14:141–144. doi: 10.4274/tjod.40225. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 420.Burbano J., Salazar-González A., Echeverri C., Rendón G., Gaviria M., Pareja R. Cutaneous lymphangitic carcinomatosis: A rare metastasis from cervical cancer. Gynecol. Oncol. Rep. 2018;26:1–3. doi: 10.1016/j.gore.2018.07.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 421.Yamashita H., Okuma K., Nakagawa K. Iatrogenic vulvar skin metastases after interstitial radiotherapy for recurrent cervical cancer. J. Dermatol. 2009;36:663–665. doi: 10.1111/j.1346-8138.2009.00729.x. [DOI] [PubMed] [Google Scholar]
- 422.Olawaiye A.B., Cotler J., Cuello M.A., Bhatla N., Okamoto A., Wilailak S., Purandare C.N., Lindeque G., Berek J.S., Kehoe S. FIGO staging for carcinoma of the vulva: 2021 revision. Int. J. Gynaecol. Obstet. 2021;155:43–47. doi: 10.1002/ijgo.13880. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 423.Temkin S.M., Hellman M., Lee Y.C., Abulafia O. Surgical resection of vulvar metastases of endometrial cancer: A presentation of two cases. J. Low. Genit. Tract. Dis. 2007;11:118–121. doi: 10.1097/01.lgt.0000236970.35125.4b. [DOI] [PubMed] [Google Scholar]
- 424.Fulcher A.S., O’Sullivan S.G., Segreti E.M., Kavanagh B.D. Recurrent cervical carcinoma: Typical and atypical manifestations. Radiographics. 1999;19:S103–S116. doi: 10.1148/radiographics.19.suppl_1.g99oc19s103. quiz S264–S265. [DOI] [PubMed] [Google Scholar]
- 425.Güngördük K., Kocaer M., Gülseren V., Özdemir A.I., Gokcu M., Güngördük O., Sancı M. Management of Isolated Vaginal Metastasis in Squamous Cell Cervical Cancer: 23 Years’ Experience at a Single Center. Oncol. Res. Treat. 2016;39:616–621. doi: 10.1159/000448540. [DOI] [PubMed] [Google Scholar]
- 426.Chen N.J. Vagina invasion by cervical carcinoma. Acta Med. Okayama. 1984;38:305–313. doi: 10.18926/AMO/30348. [DOI] [PubMed] [Google Scholar]
- 427.Chow Z., Fabian D. Cervical cancer with vaginal recurrence and prior pelvic radiation. Int. J. Radiat. Oncol. Biol. Phys. 2024;118:886–887. doi: 10.1016/j.ijrobp.2023.11.018. [DOI] [PubMed] [Google Scholar]
- 428.Abe A., Matoda M., Okamoto S., Kondo E., Kato K., Omatsu K., Umayahara K., Utsugi K., Takeshima N. Resection of the vaginal vault for vaginal recurrence of cervical cancer after hysterectomy and brachytherapy. World J. Surg. Oncol. 2015;13:137. doi: 10.1186/s12957-015-0495-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 429.Benedet J.L., Bender H., Jones H., 3rd, Ngan H.Y., Pecorelli S. FIGO staging classifications and clinical practice guidelines in the management of gynecologic cancers. FIGO Committee on Gynecologic Oncology. Int. J. Gynaecol. Obstet. 2000;70:209–262. [PubMed] [Google Scholar]
- 430.Mathew G., Watson D.I., Ellis T., De Young N., Rofe A.M., Jamieson G.G. The effect of laparoscopy on the movement of tumor cells and metastasis to surgical wounds. Surg. Endosc. 1997;11:1163–1166. doi: 10.1007/s004649900561. [DOI] [PubMed] [Google Scholar]
- 431.Goldfarb M., Brower S., Schwaitzberg S.D. Minimally invasive surgery and cancer: Controversies. Part 1. Surg. Endosc. 2010;24:304–334. doi: 10.1007/s00464-009-0583-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 432.Vasuki S., Durgalakshmi J., Latha J. Cutaneous metastases presenting as genital ulcer disease. Indian J. Sex. Transm. Dis. 2014;35:43–45. doi: 10.4103/0253-7184.132422. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 433.Behtash N., Mehrdad N., Shamshirsaz A., Hashemi R., Amouzegar Hashemi F. Umblical metastasis in cervical cancer. Arch. Gynecol. Obstet. 2008;278:489–491. doi: 10.1007/s00404-008-0617-4. [DOI] [PubMed] [Google Scholar]
- 434.Behtash N., Ghaemmaghami F., Yarandi F., Ardalan F.A., Khanafshar N. Cutaneous metastasis from carcinoma of the cervix at the drain site. Gynecol. Oncol. 2002;85:209–211. doi: 10.1006/gyno.2001.6559. [DOI] [PubMed] [Google Scholar]
- 435.Khurana R., Singh S. Isolated cutaneous metastasis to thigh from cancer cervix—Fourteen years after curative radiotherapy. Internet J. Gynecol. Obstet. 2009;11:1. [Google Scholar]
- 436.Ayyamperumal A., Tharini G., Ravindran V., Parveen B. Cutaneous manifestations of internal malignancy. Indian J. Dermatol. 2012;57:260–264. doi: 10.4103/0019-5154.97657. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 437.Nakayama K., Teshima H., Hirai Y., Hasumi K., Masubuchi K. Stump recurrence after radical hysterectomy for patients with uterine cervical cancer. Nihon Sanka Fujinka Gakkai Zasshi. 1990;42:241–245. (In Japanese) [PubMed] [Google Scholar]
- 438.Van Calsteren K., Vergote I., Amant F. Cervical neoplasia during pregnancy: Diagnosis, management and prognosis. Best Pract. Res. Clin. Obstet. Gynaecol. 2005;19:611Y30. doi: 10.1016/j.bpobgyn.2005.03.002. [DOI] [PubMed] [Google Scholar]
- 439.Stenson R., Jacobs A.J., Janney C.G., Schmidt D.A. Incisional recurrence of a squamous cell cervical carcinoma following operative staging. Gynecol. Oncol. 1990;39:232–235. doi: 10.1016/0090-8258(90)90440-V. [DOI] [PubMed] [Google Scholar]
- 440.Bhatla N., Aoki D., Sharma D.N., Sankaranarayanan R. Cancer of the cervix uteri: 2021 update. Int. J. Gynaecol. Obstet. 2021;155((Suppl. S1)):28–44. doi: 10.1002/ijgo.13865. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 441.Nomden C.N., Pötter R., de Leeuw A.A.C., Tanderup K., Lindegaard J.C., Schmid M.P., Fortin I., Haie-Meder C., Mahantshetty U., Hoskin P., et al. Nodal failure after chemo-radiation and MRI guided brachytherapy in cervical cancer: Patterns of failure in the EMBRACE study cohort. Radiother. Oncol. 2019;134:185–190. doi: 10.1016/j.radonc.2019.02.007. [DOI] [PubMed] [Google Scholar]
- 442.Wright J.D., Matsuo K., Huang Y., Tergas A.I., Hou J.Y., Khoury-Collado F., St Clair C.M., Ananth C.V., Neugut A.I., Hershman D.L. Prognostic Performance of the 2018 International Federation of Gynecology and Obstetrics Cervical Cancer Staging Guidelines. Obstet. Gynecol. 2019;134:49–57. doi: 10.1097/AOG.0000000000003311. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 443.Liu C., Ran X., Wang Z., Zhang K. Efficacy and safety of PD-1 inhibitor combined with concurrent chemoradiotherapy in locally advanced cervical cancer with pelvic and/or para-aortic lymph node metastases: A retrospective cohort study. Chin. Clin. Oncol. 2023;12:38. doi: 10.21037/cco-23-70. [DOI] [PubMed] [Google Scholar]
- 444.Guo T., Zhao Y., Zeng J., Li J., Tang E., Wu L. Examined lymph node counts affected the staging and survival in cervical cancer: A retrospective study using the SEER and Chinese cohort. Ann. Med. 2025;57:2459821. doi: 10.1080/07853890.2025.2459821. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 445.Wang Y., Liu X., Liu J., Liu L., Ma Y. Should all cervical cancer patients with positive lymph node receive definitive radiotherapy: A population-based comparative study. Arch. Gynecol. Obstet. 2025;311:123–134. doi: 10.1007/s00404-024-07896-2. [DOI] [PubMed] [Google Scholar]
- 446.Charkviani L., Charkviani T., Natenadze N., Tsitsishvili Z. Cervical carcinoma and pregnancy. Clin. Exp. Obstet. Gynecol. 2003;30:19–22. [PubMed] [Google Scholar]
- 447.Xia T., Gao Y., Wu B., Yang Y. Clinical analysis of twenty cases of cervical cancer associated with pregnancy. J. Cancer Res. Clin. Oncol. 2015;141:1633–1637. doi: 10.1007/s00432-014-1886-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 448.Mikuta J.J. Invasive carcinoma of the cervix in pregnancy. South. Med. J. 1967;60:843–847. doi: 10.1097/00007611-196708000-00010. [DOI] [PubMed] [Google Scholar]
- 449.Mandato V.D., Mastrofilippo V., Palicelli A., Silvotti M., Serra S., Giaccherini L., Aguzzoli L. Solitary vulvar metastasis from early-stage endometrial cancer: Case report and literature review. Medicine. 2021;100:e25863. doi: 10.1097/MD.0000000000025863. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 450.Kipnis P., Ramanathan D., Hoehn R., Jethwa A.R., Karakla D.W., Rohr B., Sutter C.M., Mark J.R., Khaja S.F., Li S., et al. Tumor seeding across specialties: A systematic review. Front. Oncol. 2024;14:1464767. doi: 10.3389/fonc.2024.1464767. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 451.Imachi M., Tsukamoto N., Kinoshita S., Nakano H. Skin metastasis from carcinoma of the uterine cervix. Gynecol. Oncol. 1993;48:349–354. doi: 10.1006/gyno.1993.1061. [DOI] [PubMed] [Google Scholar]
- 452.Agrawal A., Yau A., Magliocco A., Chu P. Cutaneous metastatic disease in cervical cancer: A case report. J. Obstet. Gynaecol. Can. 2010;32:467. doi: 10.1016/S1701-2163(16)34501-7. [DOI] [PubMed] [Google Scholar]
- 453.Sim J.H., Lee J.S., Jang D.M., Kim H.J., Lee S.W., Cho H.S., Choi W.J. Effects of Perioperative Inflammatory Response in Cervical Cancer: Laparoscopic versus Open Surgery. J. Clin. Med. 2021;10:4198. doi: 10.3390/jcm10184198. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 454.Bohlin K.S., Brännström M., Dahm-Kähler P. Gynecological cancer during pregnancy-From a gyne-oncological perspective. Acta Obstet. Gynecol. Scand. 2024;103:761–766. doi: 10.1111/aogs.14763. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 455.Urabe Y., Tanaka H., Nakahara H., Tanino F., Yamashita K., Akabane S., Ishikawa A., Shimomura M., Ohdan H., Oka S. A case of colon cancer implanted on endoscopic resection ulcer certified by cancer genomic testing. Clin. J. Gastroenterol. 2024;17:1047–1052. doi: 10.1007/s12328-024-02037-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 456.Yamashina T., Shimatani M., Matsumoto H., Orino M., Kano M., Saito N., Horitani S., Mitsuyama T., Takeo M., Yuba T. Tumor cell implantation from an oral advanced cancer at the rectal endoscopic submucosal dissection site: A case report and literature review. J. Anus Rectum Colon. 2024;8:417–422. doi: 10.23922/jarc.2024-004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 457.Raskov H., Orhan A., Salanti A., Gögenur I. Premetastatic niches, exosomes and circulating tumor cells: Early mechanisms of tumor dissemination and the relation to surgery. Int. J. Cancer. 2020;146:3244–3255. doi: 10.1002/ijc.32820. [DOI] [PubMed] [Google Scholar]
- 458.Sharma D.N., Chawla S., Chander S., Gairola M., Thulkar S., Singh M.K. Cervical carcinoma recurring in an abdominal wall incision. Clin. Oncol. (R. Coll. Radiol.) 2000;12:354–356. doi: 10.1053/clon.2000.9193. [DOI] [PubMed] [Google Scholar]
- 459.Sultana A. A rare case of squamous cell carcinoma of the cervix with incisional site recurrence. Cureus. 2022;14:e21447. doi: 10.7759/cureus.21447. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 460.Peng J., Dong R., Jiao J., Liu M., Zhang X., Bu H., Dong P., Zhao S., Xing N., Feng S., et al. Enhanced recovery after surgery impact on the systemic inflammatory response of patients following gynecological oncology surgery: A prospective randomized study. Cancer Manag. Res. 2021;13:4383–4392. doi: 10.2147/CMAR.S294718. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 461.Pilka R., Marek R., Adam T., Kudela M., Ondrová D., Neubert D., Hambálek J., Maděrka M., Solichová D., Krčmová L.K., et al. Systemic inflammatory response after open, laparoscopic and robotic surgery in endometrial cancer patients. Anticancer Res. 2016;36:2909–2922. [PubMed] [Google Scholar]
- 462.Dehner L.P. Metastatic and secondary tumors of the vulva. Obstet. Gynecol. 1973;42:47–57. [PubMed] [Google Scholar]
- 463.Giordano G., Gnetti L., Melpignano M. Endometrial carcinoma metastatic to the vulva: A case report and review of the literature. Pathol. Res. Pract. 2005;201:751–756. doi: 10.1016/j.prp.2005.08.006. [DOI] [PubMed] [Google Scholar]
- 464.Wimmer J.L., Coffey D.M., Kaplan A.L., Ayala A.G., Ro J.Y. Tumor-to-tumor metastasis with endometrial carcinoma metastatic to squamous cell carcinoma of vulva: The first reported case. Arch. Pathol. Lab. Med. 2013;137:1825–1828. doi: 10.5858/arpa.2012-0723-CR. [DOI] [PubMed] [Google Scholar]
- 465.Fakor F., Hajizadeh Falah H., Khajeh Jahromi S. Endometrial carcinoma metastatic to the clitoris: A case report and review of the literature. Acta Med. Iran. 2013;51:652–654. [PubMed] [Google Scholar]
- 466.Rottenstreich M., Armon S., Beller U., Rosengarten O., Vernea F., Reichman O. Recurrence of endometrial carcinoma presenting as vulvar lesions. Int. J. Gynaecol. Obstet. 2019;145:123–124. doi: 10.1002/ijgo.12762. [DOI] [PubMed] [Google Scholar]
- 467.Bader A.A., Bjelic-Radisic V., Tamussino K.F., Pristauz G., Winter R. Recurrence in a Schuchardt incision after Schauta-Amreich radical vaginal hysterectomy for cervical cancer. Int. J. Gynecol. Cancer. 2006;16:1479–1481. doi: 10.1111/j.1525-1438.2006.00493.x. [DOI] [PubMed] [Google Scholar]
- 468.Barter J.F., Hatch K.D., Orr J.W., Jr., Shingleton H.M. Isolated abdominal wound recurrence of an endometrial adenocarcinoma confined to a polyp. Gynecol. Oncol. 1986;25:372–375. doi: 10.1016/0090-8258(86)90089-2. [DOI] [PubMed] [Google Scholar]
- 469.Curtis M.G., Hopkins M.P., Cross B., Tantri M.D., Jenison E.L., Rehmus E. Wound seeding associated with endometrial cancer. Gynecol. Oncol. 1994;52:413–415. doi: 10.1006/gyno.1994.1072. [DOI] [PubMed] [Google Scholar]
- 470.Stolnicu S., Terinte C., Ioanid N., Silva E. Presence of tumor cells in the vagina during surgical treatment could be the source of vaginal recurrence in patients with endometrial carcinoma—A pilot prospective study. Ann. Diagn. Pathol. 2020;46:151503. doi: 10.1016/j.anndiagpath.2020.151503. [DOI] [PubMed] [Google Scholar]
- 471.Suzuki S. Risk factors for intrapartum anorectal mucosal lacerations and rectovaginal fistula: A retrospective comparative study. JMA J. 2024;7:269–273. doi: 10.31662/jmaj.2023-0131. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 472.Thiele H., Wesch G., Nüsser C.J. Surgical therapy of enterovaginal fistulae following gynecologic primary procedures. Langenbecks Arch. Chir. 1982;357:35–40. doi: 10.1007/BF01239659. [DOI] [PubMed] [Google Scholar]
- 473.Zizzo M., Tumiati D., Bassi M.C., Zanelli M., Sanguedolce F., Porpiglia F., Fiori C., Campobasso D., Castro Ruiz C., Bergamaschi F.A., et al. Management of colovesical fistula: A systematic review. Minerva Urol. Nephrol. 2022;74:400–408. doi: 10.23736/S2724-6051.21.04750-9. [DOI] [PubMed] [Google Scholar]
- 474.Howard D., DeLancey J.O., Burney R.E. Fistula-in-ano after episiotomy. Obstet. Gynecol. 1999;93:800–802. doi: 10.1016/s0029-7844(98)00368-8. [DOI] [PubMed] [Google Scholar]
- 475.Barranger E., Haddad B., Paniel B.J. Fistula in ano as a rare complication of mediolateral episiotomy: Report of three cases. Am. J. Obstet. Gynecol. 2000;182:733–734. doi: 10.1067/mob.2000.102960. [DOI] [PubMed] [Google Scholar]
- 476.Favero G., Chiantera V., Oleszczuk A., Gallotta V., Hertel H., Herrmann J., Marnitz S., Köhler C., Schneider A. Invasive cervical cancer during pregnancy: Laparoscopic nodal evaluation before oncologic treatment delay. Gynecol. Oncol. 2010;118:123–127. doi: 10.1016/j.ygyno.2010.04.012. [DOI] [PubMed] [Google Scholar]
- 477.Atia W.A., Tidbury P.J. Persistent episiotomy granulation polyps; a polysymptomatic clinical entity. Acta Obstet. Gynecol. Scand. 1995;74:361–366. doi: 10.3109/00016349509024429. [DOI] [PubMed] [Google Scholar]
- 478.Mateoiu C., Palicelli A., Maloberti T., De Biase D., De Leo A., Lindh M., Bohlin K.S., Stolnicu S. Primary vulvar adenocarcinoma of intestinal type: Report of two cases showing molecular similarity with colorectal adenocarcinoma. Pathol. Res. Pract. 2024;255:155181. doi: 10.1016/j.prp.2024.155181. [DOI] [PubMed] [Google Scholar]
- 479.Soper D.E. Clostridial myonecrosis arising from an episiotomy. Obstet. Gynecol. 1986;68((Suppl. 3)):26S–28S. [PubMed] [Google Scholar]
- 480.Ramin S.M., Ramus R.M., Little B.B., Gilstrap L.C., 3rd Early repair of episiotomy dehiscence associated with infection. Am. J. Obstet. Gynecol. 1992;167:1104–1107. doi: 10.1016/S0002-9378(12)80047-0. [DOI] [PubMed] [Google Scholar]
- 481.Şahin N., Solak A., Karaarslan S., Doruk S. Sarcoidosis of the vagina treated with methotrexate. Climacteric. 2016;19:308–310. doi: 10.3109/13697137.2015.1117067. [DOI] [PubMed] [Google Scholar]
- 482.Aoun F., El Rassy E., Kourie H.R., Hawaux E., van Velthoven R. Vulvar metastasis from bladder Cancer. Case Rep. Obstet. Gynecol. 2015;2015:324634. doi: 10.1155/2015/324634. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 483.Tang T.Y., Wang T.Y. A vulvar mass as the first presentation in colorectal carcinoma: An unusual site of metastasis masquerading a primary Cancer. Taiwan J. Obstet. Gynecol. 2018;57:157–160. doi: 10.1016/j.tjog.2017.12.035. [DOI] [PubMed] [Google Scholar]
- 484.Gandhi A.K., Roy S., Mridha A.R., Sharma D.N. Vulvar metastasis from carcinoma breast unveiling distant metastasis: Exploring an unusual metastatic pattern. J. Egypt. Natl. Cancer Inst. 2015;27:243–246. doi: 10.1016/j.jnci.2015.05.005. [DOI] [PubMed] [Google Scholar]
- 485.Kajtezovic S., Walker A.R., Hjalmarsson B., Bell S.G., Everett E., Wong C. Management of secondary Paget’s disease of the vulva associated with transitional cell carcinoma. J. Cancer Res. Clin. Oncol. 2022;148:1697–1702. doi: 10.1007/s00432-022-04007-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 486.Kim N.R., Cho H.Y., Baek J.H., Jeong J., Ha S.Y., Seok J.Y., Park S.W., Sym S.J., Lee K.C., Chung D.H. Rare Case of Anal Canal Signet Ring Cell Carcinoma Associated with Perianal and Vulvar Pagetoid Spread. J. Pathol. Transl. Med. 2016;50:231–237. doi: 10.4132/jptm.2015.08.08. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 487.Ahmed W., Beasley W.H. Carcinoma of stomach with a metastasis in the clitoris. J. Pak. Med. Assoc. 1979;29:62–63. [PubMed] [Google Scholar]
- 488.Matak M., Lisica-Šikić N., Matak L. Cutaneous vulvar metastasis in a patient with rectal adenocarcinoma. Int. J. Dermatol. 2022;61:e168–e169. doi: 10.1111/ijd.16006. [DOI] [PubMed] [Google Scholar]
- 489.Olmes G.L., Breitbach G.P., Tepikin A., Nistor A., Solomayer E.F., Hamoud B.H. A Metastasis of Ovarian Cancer in the Bartholin Gland: A Case Report with Systematic Literature Review. Reprod. Sci. 2024;31:550–554. doi: 10.1007/s43032-023-01373-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 490.Zanelli M., Sanguedolce F., Zizzo M., Fragliasso V., Broggi G., Palicelli A., Loscocco G.G., Cresta C., Caprera C., Corsi M., et al. Skin Involvement by Hematological Neoplasms with Blastic Morphology: Lymphoblastic Lymphoma, Blastoid Variant of Mantle Cell Lymphoma and Differential Diagnoses. Cancers. 2023;15:3928. doi: 10.3390/cancers15153928. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 491.Beyhan E., Ergül N., Bektaş S., Erol Ö., Çermik T.F. Solitary Vulvar Involvement of Ovarian Non-Hodgkin Lymphoma Mimicking Bartholin’s Abscess on 18F-FDG PET/CT. Clin. Nucl. Med. 2021;46:255–257. doi: 10.1097/RLU.0000000000003494. [DOI] [PubMed] [Google Scholar]
- 492.Zanelli M., Palicelli A., Sanguedolce F., Zizzo M., Filosa A., Ricci L., Cresta C., Martino G., Bisagni A., Zanetti E., et al. Cutaneous Involvement in Diseases with Plasma Cell Differentiation: Diagnostic Approach. Curr. Oncol. 2022;29:3026–3043. doi: 10.3390/curroncol29050246. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 493.Zanelli M., Ricci S., Sanguedolce F., Palicelli A., Farnetti E., Tafuni A., Zizzo M., Valli R., Celis M.I.A., Cavazza A., et al. Cutaneous Localization of Classic Hodgkin Lymphoma Associated with Mycosis Fungoides: Report of a Rare Event and Review of the Literature. Life. 2021;11:1069. doi: 10.3390/life11101069. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 494.Yang E.J., Howitt B.E., Fletcher C.D.M., Nucci M.R. Solitary fibrous tumour of the female genital tract: A clinicopathological analysis of 25 cases. Histopathology. 2018;72:749–759. doi: 10.1111/his.13430. [DOI] [PubMed] [Google Scholar]
- 495.Ardighieri L., Palicelli A., Ferrari F., Ragnoli M., Ghini I., Bugatti M., Bercich L., Sartori E., Odicino F.E. Risk Assessment in Solitary Fibrous Tumor of the Uterine Corpus: Report of a Case and Systematic Review of the Literature. Int. J. Surg. Pathol. 2022;30:177–183. doi: 10.1177/10668969211025759. [DOI] [PubMed] [Google Scholar]
- 496.Heller A., Breitner D., Cracchiolo B., Heller D.S. Metastatic Neoplasms to the Vulva—A Review. J. Low. Genit. Tract Dis. 2022;26:152–155. doi: 10.1097/LGT.0000000000000660. [DOI] [PubMed] [Google Scholar]
- 497.Sand F.L., Thomsen S.F. Skin diseases of the vulva: Infectious diseases. J. Obstet. Gynaecol. 2017;37:840–848. doi: 10.1080/01443615.2017.1306696. [DOI] [PubMed] [Google Scholar]
- 498.Horta H.M. Linfogranuloma venéreo, elefantäase da vulva e gravidez. Rev. Gynecol. Obstet. 1951;45:568–572. [PubMed] [Google Scholar]
- 499.Pund E.R., Lacy G.R., Jr. Lymphogranuloma venereum (inguinale), a precipitating cause of carcinoma; statistical analysis of one hundred and thirty-five cases of carcinoma of penis, vulva and anorectum. Am. Surg. 1951;17:711–718. [PubMed] [Google Scholar]
- 500.Mason W.A. Granuloma Inguinale, Complicated with Syphiloma of Vulva and Chancroidal Infection: Report of a Case. J. Natl. Med. Assoc. 1939;31:210–212. [PMC free article] [PubMed] [Google Scholar]
- 501.Kuratsune K., Tanaka Y., Shiki Y. Syphilis of the vulva. AJOG Glob. Rep. 2023;3:100237. doi: 10.1016/j.xagr.2023.100237. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 502.Robillard J., Rivard C., Labbé A.C. Vulvar condyloma lata as a first presentation of syphilis. Can. Med. Assoc. J. 2023;195:E748. doi: 10.1503/cmaj.230159. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 503.Sárdy M., Wollenberg A., Niedermeier A., Flaig M.J. Genital Ulcers Associated with Epstein-Barr Virus Infection (Ulcus Vulvae Acutum) Acta Derm. Venereol. 2010;91:55–59. doi: 10.2340/00015555-0979. [DOI] [PubMed] [Google Scholar]
- 504.Naher H., Gissmann L., Freese U.K., Petzoldt D., Helfrich S. Subclinical Epstein-Barr virus infection of both the male and female genital tract—Indication for sexual transmission. J. Investig. Dermatol. 1992;98:791–793. doi: 10.1111/1523-1747.ep12499958. [DOI] [PubMed] [Google Scholar]
- 505.Taylor Y., Melvin W.T., Sewell H.F., Flannelly G., Walker F. Prevalence of EpsteinBarr virus in the cervix. J. Clin. Pathol. 1994;47:92–93. doi: 10.1136/jcp.47.1.92. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 506.Portnoy J., Ahronheim G.A., Ghibu F., Clecner B., Joncas J.H. Recovery of Epstein-Barr virus from genital ulcers. N. Engl. J. Med. 1984;311:966–967. doi: 10.1056/NEJM198410113111507. [DOI] [PubMed] [Google Scholar]
- 507.Halvorsen J.A., Brevig T., Aas T., Skar A.G., Slevolden E.M., Moi H. Genital ulcers as initial manifestation of Epstein-Barr virus infection: Two new cases and a review of the literature. Acta Derm. Venereol. 2006;86:439–442. doi: 10.2340/00015555-0140. [DOI] [PubMed] [Google Scholar]
- 508.Bento M.L., de Matos L.V., Ribeiro L.A., Gomes O., Nogueira F., Esteves G., Valle S., Martins H., Raposo J. Necrotizing fasciitis of the vulva due to carbapenem-resistant Enterobacteriaceae as a complication of acute myeloid leukemia treatment: A case report. J. Med. Case Rep. 2022;16:148. doi: 10.1186/s13256-021-03179-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 509.Pinsky B.A., Baron E.J., Janda J.M., Banaei N. Bartholin’s abscess caused by hypermucoviscous Klebsiella pneumoniae. Pt 5J. Med. Microbiol. 2009;58:671–673. doi: 10.1099/jmm.0.006734-0. [DOI] [PubMed] [Google Scholar]
- 510.Anderson T.R., Carletto E., Barreto-Nadal V., Langston E., Jones M. Intersecting Pathologies: Vulvar Cancer Complicated by a Fusobacterium necrophorum Infection. Cureus. 2024;16:e73420. doi: 10.7759/cureus.73420. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 511.Chow A.W., Marshall J.R., Guze L.B. Anaerobic infections of the female genital tract: Prospects and perspectives. Obstet. Gynecol. Surv. 1975;30:477–494. doi: 10.1097/00006254-197507000-00028. [DOI] [PubMed] [Google Scholar]
- 512.Mastrobattista J.M., Parisi V.M. Vertical transmission of a Citrobacter infection. Am. J. Perinatol. 1997;14:465–467. doi: 10.1055/s-2007-994181. [DOI] [PubMed] [Google Scholar]
- 513.Bakir A., Cendek B.D., Usluca S., Aral M., Korkut G., Morkoc M., Yagiz G.C., Kurkcu M.F., Sapmaz M.A., Polat M., et al. Detection of sexually transmitted infection agents in pregnant women using multiplex polymerase chain reaction method. BMC Pregnancy Childbirth. 2025;25:307. doi: 10.1186/s12884-025-07430-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 514.Bonasoni M.P., Comitini G., Pati M., Bardaro M., Russello G., Carretto E., Dalla Dea G., Palicelli A., Bernardelli G., Chesi E., et al. Fulminant Sepsis and Perinatal Death at 23 Weeks Due to Fusobacterium nucleatum. Fetal Pediatr. Pathol. 2023;42:456–463. doi: 10.1080/15513815.2022.2131487. [DOI] [PubMed] [Google Scholar]
- 515.Bonasoni M.P., Comitini G., Pati M., Russello G., Vizzini L., Bardaro M., Pini P., Marrollo R., Palicelli A., Dalla Dea G., et al. Second Trimester Fetal Loss Due to Citrobacter koseri Infection: A Rare Cause of Preterm Premature Rupture of Membranes (PPROM) Diagnostics. 2022;12:159. doi: 10.3390/diagnostics12010159. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 516.Bonasoni M.P., Palicelli A., Dalla Dea G., Comitini G., Nardini P., Vizzini L., Russello G., Bardaro M., Carretto E. Klebsiella pneumoniae Chorioamnionitis: An Underrecognized Cause of Preterm Premature Rupture of Membranes in the Second Trimester. Microorganisms. 2021;9:96. doi: 10.3390/microorganisms9010096. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 517.Bonasoni M.P., Palicelli A., Dalla Dea G., Comitini G., Pazzola G., Russello G., Bertoldi G., Bardaro M., Zuelli C., Carretto E. Kingella kingae Intrauterine Infection: An Unusual Cause of Chorioamnionitis and Miscarriage in a Patient with Undifferentiated Connective Tissue Disease. Diagnostics. 2021;11:243. doi: 10.3390/diagnostics11020243. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 518.Gore-Langton G.R., Madanitsa M., Barsosio H.C., Minja D.T.R., Mosha J., Kavishe R.A., Mtove G., Gesase S., Msemo O.A., Kariuki S., et al. Prevalence and risk factors of curable sexually transmitted and reproductive tract infections and malaria co-infection among pregnant women at antenatal care booking in Kenya, Malawi and Tanzania: A cross-sectional study of randomised controlled trial data. BMJ Public Health. 2024;2:e000501. doi: 10.1136/bmjph-2023-000501. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 519.Naseem M., Khan S., Alshaya D.S., Shah T.A., Noreen S., Rehman F.U., Attia K.A., Sultana N. ToRCH pathogens-induced histopathological changes in placental tissues and associated post obstetric complications. Acta Trop. 2025;261:107466. doi: 10.1016/j.actatropica.2024.107466. [DOI] [PubMed] [Google Scholar]
- 520.Fatah H.R. Association between TORCH infection and lupus anticoagulant antibody in pregnant women with recurrent abortion. Cell. Mol. Biol. 2023;69:162–166. doi: 10.14715/cmb/2023.69.13.25. [DOI] [PubMed] [Google Scholar]
- 521.Castilho J.L., Fonseca F.F., Kim A., Jalil E., Tu S., Beber A.M.B., Benzaken A.S., Veloso V.G., Grinsztejn B., Shepherd B.E., et al. Prenatal syphilis and adverse pregnancy outcomes in women with HIV receiving ART in Brazil: A population-based study. Lancet Reg. Health Am. 2024;39:100894. doi: 10.1016/j.lana.2024.100894. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 522.Papadatou V., Tologkos S., Deftereou T., Alexiadis T., Pagonopoulou O., Alexiadi C.A., Bakatselou P., Oglou S.T.C., Tripsianis G., Mitrakas A., et al. Viral-induced inflammation can lead to adverse pregnancy outcomes. Folia Med. 2023;65:744–752. doi: 10.3897/folmed.65.e90054. [DOI] [PubMed] [Google Scholar]
- 523.Barinov S.V., Tirskaya Y.I., Kadsyna T.V., Lazareva O.V., Medyannikova I.V., Tshulovski Y.I. Pregnancy and delivery in women with a high risk of infection in pregnancy. J. Matern. Fetal Neonatal Med. 2022;35:2122–2127. doi: 10.1080/14767058.2020.1781810. [DOI] [PubMed] [Google Scholar]
- 524.Leigh R., Nyirjesy P. Genitourinary manifestations of Epstein-Barr virus infections. Curr. Infect. Dis. Rep. 2009;11:449–456. doi: 10.1007/s11908-009-0065-8. [DOI] [PubMed] [Google Scholar]
- 525.Li W., Duan X., Chen X., Zhan M., Peng H., Meng Y., Li X., Li X.Y., Pang G., Dou X. Immunotherapeutic approaches in EBV-associated nasopharyngeal carcinoma. Front. Immunol. 2023;13:1079515. doi: 10.3389/fimmu.2022.1079515. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 526.Saito M., Kono K. Landscape of EBV-positive gastric cancer. Gastric Cancer. 2021;24:983–989. doi: 10.1007/s10120-021-01215-3. [DOI] [PubMed] [Google Scholar]
- 527.Zanelli M., Sanguedolce F., Palicelli A., Zizzo M., Martino G., Caprera C., Fragliasso V., Soriano A., Valle L., Ricci S., et al. EBV-Driven Lymphoproliferative Disorders and Lymphomas of the Gastrointestinal Tract: A Spectrum of Entities with a Common Denominator (Part 2) Cancers. 2021;13:4527. doi: 10.3390/cancers13184527. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 528.Zanelli M., Sanguedolce F., Palicelli A., Zizzo M., Martino G., Caprera C., Fragliasso V., Soriano A., Valle L., Ricci S., et al. EBV-Driven Lymphoproliferative Disorders and Lymphomas of the Gastrointestinal Tract: A Spectrum of Entities with a Common Denominator (Part 1) Cancers. 2021;13:4578. doi: 10.3390/cancers13184578. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 529.Zanelli M., Sanguedolce F., Palicelli A., Zizzo M., Martino G., Caprera C., Fragliasso V., Soriano A., Gozzi F., Cimino L., et al. EBV-Driven Lymphoproliferative Disorders and Lymphomas of the Gastrointestinal Tract: A Spectrum of Entities with a Common Denominator (Part 3) Cancers. 2021;13:6021. doi: 10.3390/cancers13236021. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 530.Assanasen T., Wannakrairot P., Keelawat S., Ruangvejvorachai P., Pramprayoon N. Extranodal malignant lymphoma of the upper aerodigestive tract: Prevalence of Epstien-Barr virus (EBV) infection in King Chulalongkorn Memorial Hospital. J. Med. Assoc. Thai. 2005;88((Suppl. S4)):S266–S273. [PubMed] [Google Scholar]
- 531.Zanelli M., Parente P., Sanguedolce F., Zizzo M., Palicelli A., Bisagni A., Carosi I., Trombetta D., Mastracci L., Ricci L., et al. Intravascular NK/T-Cell Lymphoma: What We Know about This Diagnostically Challenging, Aggressive Disease. Cancers. 2022;14:5458. doi: 10.3390/cancers14215458. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 532.Au-Yeung R., Loong F., Kwong Y.L. CD3+/CD56+ EBV+ neoplasms in the nose and upper aerodigestive tract: Potential misdiagnosis of plasma cell malignancies as NK/T cell lymphoma. Ann. Hematol. 2021;100:1101–1104. doi: 10.1007/s00277-020-04228-7. [DOI] [PubMed] [Google Scholar]
- 533.Zanelli M., Sanguedolce F., Zizzo M., Palicelli A., Pellegrini D., Farinacci S., Soriano A., Froio E., Cormio L., Carrieri G., et al. Primary Diffuse Large B-Cell Lymphoma of the Urinary Bladder: Update on a Rare Disease and Potential Diagnostic Pitfalls. Curr. Oncol. 2022;29:956–968. doi: 10.3390/curroncol29020081. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 534.Purtilo D.T., Sakamoto K. Reactivation of Epstein-Barr virus in pregnant women: Social factors, and immune competence as determinants of lymphoproliferative diseases—A hypothesis. Med. Hypotheses. 1982;8:401–408. doi: 10.1016/0306-9877(82)90033-0. [DOI] [PubMed] [Google Scholar]
- 535.Avgil M., Diav-Citrin O., Shechtman S., Arnon J., Wajnberg R., Ornoy A. Epstein-Barr virus infection in pregnancy—a prospective controlled study. Reprod. Toxicol. 2008;25:468–471. doi: 10.1016/j.reprotox.2008.04.004. [DOI] [PubMed] [Google Scholar]
- 536.Tseng L.H., Tseng C.J., Soong Y.K., Hsueh S., Pao C.C. Evidence of Epstein-Barr virus in lymphoepithelioma-like carcinoma of the uterine cervix: A case report. Chang. Yi Xue Za Zhi. 1998;21:184–188. [PubMed] [Google Scholar]
- 537.Tseng C.J., Pao C.C., Tseng L.H., Chang C.T., Lai C.H., Soong Y.K., Hsueh S., JyuJen H. Lymphoepithelioma-like carcinoma of the cervix: Association with Epstein-Barr virus and human papillomavirus. Cancer. 1997;80:91–97. doi: 10.1002/(SICI)1097-0142(19970701)80:1<91::AID-CNCR12>3.0.CO;2-A. [DOI] [PubMed] [Google Scholar]
- 538.Bösmüller H., Haitchi-Petnehazy S., Gruber C., Roithmeier F., Stummvoll W., Webersinke G. Lymphoepithelioma-like carcinoma of the vulva, an underrecognized entity? Case report with a single inguinal micrometastasis detected by sentinel node technique. Diagn. Pathol. 2011;6:4. doi: 10.1186/1746-1596-6-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 539.Bais A.G., Kooi S., Teune T.M., Ewing P.C., Ansink A.C. Lymphoepithelioma-like carcinoma of the uterine cervix: Absence of Epstein-Barr virus, but presence of a multiple human papillomavirus infection. Gynecol. Oncol. 2005;97:716–718. doi: 10.1016/j.ygyno.2005.01.016. [DOI] [PubMed] [Google Scholar]
- 540.Chao A., Tsai C.N., Hsueh S., Lee L.Y., Chen T.C., Huang S.L., Chao F.Y., Lai C.H. Does Epstein-Barr virus play a role in lymphoepithelioma-like carcinoma of the uterine cervix? Int. J. Gynecol. Pathol. 2009;28:279–285. doi: 10.1097/PGP.0b013e31818fb0a9. [DOI] [PubMed] [Google Scholar]
- 541.Kohrenhagen N., Eck M., Höller S., Dietl J. Lymphoepithelioma-like carcinoma of the uterine cervix: Absence of Epstein-Barr virus and highrisk human papilloma virus infection. Arch. Gynecol. Obstet. 2008;277:175–178. doi: 10.1007/s00404-007-0427-0. [DOI] [PubMed] [Google Scholar]
- 542.Noel J., Lespagnard L., Fayt I., Verhest A., Dargent J. Evidence of human papilloma virus infection but lack of Epstein-Barr virus in Lymphoepithelioma-like carcinoma of uterine cervix: Report of two cases and review of the literature. Hum. Pathol. 2001;32:135–138. doi: 10.1053/hupa.2001.20901. [DOI] [PubMed] [Google Scholar]
- 543.Cheung A.N., Khoo U.S., Kwong K.Y., Srivastava G., Collins R.J. Epstein-Barr virus in carcinoma of the vulva. J. Clin. Pathol. 1993;46:849–851. doi: 10.1136/jcp.46.9.849. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 544.Niu W., Heller D.S., D’Cruz C. Lymphoepithelioma-like carcinoma of the vulva. J. Low. Genit. Tract Dis. 2003;7:184–186. doi: 10.1097/00128360-200307000-00005. [DOI] [PubMed] [Google Scholar]
- 545.Zaiem F., Deirawan H., Kherallah R., Fehmi O., Jang H., Kim S., Bandyopadhyay S., Ali-Fehmi R. Accuracy and Reproducibility of Frozen Section Diagnosis in Ovarian Tumors. Arch. Pathol. Lab. Med. 2022;146:626–631. doi: 10.5858/arpa.2020-0686-OA. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 546.Mandato V.D., Torricelli F., Mastrofilippo V., Palicelli A., Ciarlini G., Pirillo D., Annunziata G., Aguzzoli L. Accuracy of preoperative endometrial biopsy and intraoperative frozen section in predicting the final pathological diagnosis of endometrial cancer. Surg. Oncol. 2020;35:229–235. doi: 10.1016/j.suronc.2020.09.003. [DOI] [PubMed] [Google Scholar]
- 547.Torricelli F., Sauta E., Manicardi V., Mandato V.D., Palicelli A., Ciarrocchi A., Manzotti G. An Innovative Drug Repurposing Approach to Restrain Endometrial Cancer Metastatization. Cells. 2023;12:794. doi: 10.3390/cells12050794. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 548.Bouhafa T., Kanab R., Bouayed N., Masbah O., Elmazghi A., Mellas N., Hassouni K. Small cell neuroendocrine carcinoma of the vulva. Gynecol. Obstet. Fertil. 2014;42:877–879. doi: 10.1016/j.gyobfe.2014.07.032. [DOI] [PubMed] [Google Scholar]
- 549.Dinh T.T., Parker E.U., Gangadhar K., Mansoori B., Dyer B.A. Management of locally advanced mesonephric carcinoma of the cervix in the setting of Mullerian Duct anomaly spectrum and unilateral renal agenesis: A case report and review of the literature. Brachytherapy. 2021;20:1180–1186. doi: 10.1016/j.brachy.2021.08.002. [DOI] [PubMed] [Google Scholar]
- 550.Ardighieri L., Palicelli A., Ferrari F., Bugatti M., Drera E., Sartori E., Odicino F. Endometrial Carcinomas with Intestinal-Type Metaplasia/Differentiation: Does Mismatch Repair System Defects Matter? Case Report and Systematic Review of the Literature. J. Clin. Med. 2020;9:2552. doi: 10.3390/jcm9082552. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 551.Patrichi G., Patrichi A., Palicelli A., Maloberti T., de Biase D., Soslow R., Stolnicu S. High-grade Endometrial Endometrioid Carcinoma: A Case Report of Complete Transdifferentiation to Pilomatrix-like Carcinoma. Int. J. Surg. Pathol. 2025;33:1536–1540. doi: 10.1177/10668969251326262. [DOI] [PubMed] [Google Scholar]
- 552.Musangile F.Y., Matsuzaki I., Okodo M., Shirasaki A., Mikasa Y., Iwamoto R., Takahashi Y., Kojima F., Murata S.I. Detection of HPV infection in urothelial carcinoma using RNAscope: Clinicopathological characterization. Cancer Med. 2021;10:5534–5544. doi: 10.1002/cam4.4091. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 553.Page M.J., McKenzie J.E., Bossuyt P.M., Boutron I., Hoffmann T.C., Mulrow C.D., Shamseer L., Tetzlaff J.M., Akl E.A., Brennan S.E., et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Br. Med. J. 2021;372:n71. doi: 10.1136/bmj.n71. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 554.Young C., Horton R. Putting clinical trials into context. Lancet. 2005;366:107–108. doi: 10.1016/S0140-6736(05)66846-8. [DOI] [PubMed] [Google Scholar]
- 555.Turetta C., Mazzeo R., Capalbo G., Miano S., Fruscio R., Di Donato V., Falcone F., Mangili G., Pignata S., Palaia I. Management of primary and recurrent Bartholin’s gland carcinoma: A systematic review on behalf of MITO Rare Cancer Group. Tumori. 2024;110:96–108. doi: 10.1177/03008916231208308. [DOI] [PubMed] [Google Scholar]
- 556.Connor L., Dean J., McNett M., Tydings D.M., Shrout A., Gorsuch P.F., Hole A., Moore L., Brown R., Melnyk B.M., et al. Evidence-based practice improves patient outcomes and healthcare system return on investment: Findings from a scoping review. Worldviews Evid. Based Nurs. 2023;20:6–15. doi: 10.1111/wvn.12621. [DOI] [PubMed] [Google Scholar]
- 557.Pillay B., Wootten A.C., Crowe H., Corcoran N., Tran B., Bowden P., Crowe J., Costello A.J. The impact of multidisciplinary team meetings on patient assessment, management and outcomes in oncology settings: A systematic review of the literature. Cancer Treat. Rev. 2016;42:56–72. doi: 10.1016/j.ctrv.2015.11.007. [DOI] [PubMed] [Google Scholar]
- 558.Dogan A., Hilal Z., Krentel H., Cetin C., Hefler L.A., Grimm C., Tempfer C.B. Paget’s Disease of the Vulva Treated with Imiquimod: Case Report and Systematic Review of the Literature. Gynecol. Obstet. Investig. 2017;82:1–7. doi: 10.1159/000449158. [DOI] [PubMed] [Google Scholar]
- 559.Te Grootenhuis N.C., Pouwer A.W., de Bock G.H., Hollema H., Bulten J., van der Zee A.G.J., de Hullu J.A., Oonk M.H.M. Prognostic factors for local recurrence of squamous cell carcinoma of the vulva: A systematic review. Gynecol. Oncol. 2018;148:622–631. doi: 10.1016/j.ygyno.2017.11.006. [DOI] [PubMed] [Google Scholar]
- 560.Leis M., Singh A., Li C., Ahluwalia R., Fleming P., Lynde C.W. Risk of Vulvar Squamous Cell Carcinoma in Lichen Sclerosus and Lichen Planus: A Systematic Review. J. Obstet. Gynaecol. Can. 2022;44:182–192. doi: 10.1016/j.jogc.2021.09.023. [DOI] [PubMed] [Google Scholar]
- 561.Vega-Retuerta N., Sánchez-Parente S., Segura-Jiménez V. Effectiveness of multidisciplinary approaches including exercise to treat non-specific chronic low back pain: A systematic review and meta-analysis across multiple regions. Prev. Med. 2025;199:108381. doi: 10.1016/j.ypmed.2025.108381. [DOI] [PubMed] [Google Scholar]
- 562.Ernst E., Canter P.H. A systematic review of systematic reviews of spinal manipulation. J. R. Soc. Med. 2006;99:192–196. doi: 10.1177/014107680609900418. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 563.Olivadese R., Ramponi A., Boldorini R., Dalla Dea G., Palicelli A. Mitotically Active Cellular Fibroma of the Ovary Recurring After the Longest Interval of Time (16 yr): A Challenging Case with Systematic Literature Review. Int. J. Gynecol. Pathol. 2021;40:441–447. doi: 10.1097/PGP.0000000000000731. [DOI] [PubMed] [Google Scholar]
- 564.Edey K.A., Allan E., Murdoch J.B., Cooper S., Bryant A. Interventions for the treatment of Paget’s disease of the vulva. Cochrane Database Syst. Rev. 2019;6:CD009245. doi: 10.1002/14651858.CD009245.pub3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 565.Karseladze A.I., Asaturova A.V., Kiseleva I.A., Badlaeva A.S., Tregubova A.V., Zaretsky A.R., Uvarova E.V., Zanelli M., Palicelli A. Androgen Insensitivity Syndrome with Bilateral Gonadal Sertoli Cell Lesions, Sertoli-Leydig Cell Tumor, and Paratesticular Leiomyoma: A Case Report and First Systematic Literature Review. J. Clin. Med. 2024;13:929. doi: 10.3390/jcm13040929. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 566.Jull G., Moore A. Systematic reviews in review. Musculoskelet. Sci. Pract. 2020;46:102135. doi: 10.1016/j.msksp.2020.102135. [DOI] [PubMed] [Google Scholar]
- 567.Crowther M., Lim W., Crowther M.A. Systematic review and meta-analysis methodology. Blood. 2010;116:3140–3146. doi: 10.1182/blood-2010-05-280883. [DOI] [PubMed] [Google Scholar]
- 568.van der Velden K., Ansink A. Primary groin irradiation vs. primary groin surgery for early vulvar cancer. Cochrane Database Syst. Rev. 2001;4:CD002224. doi: 10.1002/14651858.CD002224. Erratum in Cochrane Database Syst. Rev. 2011, 5, CD002224. https://doi.org/10.1002/14651858.CD002224.pub2 . [DOI] [PubMed] [Google Scholar]
- 569.Hughes E.G. Systematic literature review and meta-analysis. Semin. Reprod. Endocrinol. 1996;14:161–169. doi: 10.1055/s-2007-1016324. [DOI] [PubMed] [Google Scholar]
- 570.Palicelli A., Croci S., Bisagni A., Zanetti E., De Biase D., Melli B., Sanguedolce F., Ragazzi M., Zanelli M., Chaux A., et al. What Do We Have to Know about PD-L1 Expression in Prostate Cancer? A Systematic Literature Review (Part 6): Correlation of PD-L1 Expression with the Status of Mismatch Repair System, BRCA, PTEN, and Other Genes. Biomedicines. 2022;10:236. doi: 10.3390/biomedicines10020236. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 571.Motahari-Nezhad H., Fgaier M., Mahdi Abid M., Péntek M., Gulácsi L., Zrubka Z. Digital Biomarker-Based Studies: Scoping Review of Systematic Reviews. JMIR Mhealth Uhealth. 2022;10:e35722. doi: 10.2196/35722. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 572.Disanto M.G., Mercalli F., Palicelli A., Arnulfo A., Boldorini R. A unique case of bilateral ovarian splenosis and review of the literature. APMIS. 2017;125:844–848. doi: 10.1111/apm.12714. [DOI] [PubMed] [Google Scholar]
- 573.Varse F., Janani L., Moradi Y., Solaymani-Dodaran M., Baradaran H.R., Rimaz S. Challenges in the design, conduct, analysis, and reporting in randomized clinical trial studies: A systematic review. Med. J. Islam. Repub. Iran. 2019;33:37. doi: 10.47176/mjiri.33.37. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 574.Zizzo M., Dorma M.P.F., Zanelli M., Sanguedolce F., Bassi M.C., Palicelli A., Ascani S., Giunta A. Long-Term Outcomes of Surgical Resection of Pathologically Confirmed Isolated Para-Aortic Lymph Node Metastases in Colorectal Cancer: A Systematic Review. Cancers. 2022;14:661. doi: 10.3390/cancers14030661. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 575.Palicelli A., Boldorini R., Campisi P., Disanto M.G., Gatti L., Portigliotti L., Tosoni A., Rivasi F. Tungiasis in Italy: An imported case of Tunga penetrans and review of the literature. Pathol. Res. Pract. 2016;212:475–483. doi: 10.1016/j.prp.2016.02.003. [DOI] [PubMed] [Google Scholar]
- 576.Ambrosetti F., Palicelli A., Bulfamante G., Rivasi F. Langer mesomelic dysplasia in early fetuses: Two cases and a literature review. Fetal Pediatr. Pathol. 2014;33:71–83. doi: 10.3109/15513815.2013.807322. [DOI] [PubMed] [Google Scholar]
- 577.Baudard M., Yavchitz A., Ravaud P., Perrodeau E., Boutron I. Impact of searching clinical trial registries in systematic reviews of pharmaceutical treatments: Methodological systematic review and reanalysis of meta-analyses. Br. Med. J. 2017;356:j448. doi: 10.1136/bmj.j448. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 578.Cima L., Pagliuca F., Torresani E., Polonia A., Eloy C., Dhanasekeran V., Mannan R., Gamba Torrez S., Mirabassi N., Cassisa A., et al. Decline of case reports in pathology and their renewal in the digital age: An analysis of publication trends over four decades. J. Clin. Pathol. 2023;76:76–81. doi: 10.1136/jcp-2022-208626. [DOI] [PubMed] [Google Scholar]
- 579.Trimbos J.B., Hellebrekers B.W., Kenter G.G., Peters L.A., Zwinderman K.H. The long learning curve of gynaecological cancer surgery: An argument for centralisation. BJOG. 2000;107:19–23. doi: 10.1111/j.1471-0528.2000.tb11573.x. [DOI] [PubMed] [Google Scholar]
- 580.Trimbos J.B., Adema B., Peters A.A., Kenter G.G., Snijders-Keilholz A. Morbidity and results of 100 radical hysterectomies performed in an oncology center. Ned. Tijdschr. Geneeskd. 1992;136:323–327. [PubMed] [Google Scholar]
- 581.Hermsdorf J., Retzke U., Kob D., Herrmann K. Decreasing urologic complications by the centralized therapy of cervix cancer. Zentralbl Gynakol. 1988;110:90–94. [PubMed] [Google Scholar]
- 582.Dolly D., Mihai A., Rimel B.J., Fogg L., Rotmensch J., Guirguis A., Yordan E., Dewdney S. A Delay from Diagnosis to Treatment Is Associated with a Decreased Overall Survival for Patients with Endometrial Cancer. Front. Oncol. 2016;6:31. doi: 10.3389/fonc.2016.00031. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 583.Mandato V.D., Palicelli A., Torricelli F., Mastrofilippo V., Leone C., Dicarlo V., Tafuni A., Santandrea G., Annunziata G., Generali M., et al. Should Endometrial Cancer Treat. Be Centralized? Biology. 2022;11:768. doi: 10.3390/biology11050768. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 584.Chan J.K., Gardner A.B., Taylor K., Blansit K., Thompson C.A., Brooks R., Yu X., Kapp D.S. The centralization of robotic surgery in high-volume centers for endometrial cancer patients—A study of 6560 cases in the U.S. Gynecol. Oncol. 2015;138:128–132. doi: 10.1016/j.ygyno.2015.04.031. [DOI] [PubMed] [Google Scholar]
- 585.Peccatori F.A., Azim H.A., Jr., Orecchia R., Hoekstra H.J., Pavlidis N., Kesic V., Pentheroudakis G., ESMO Guidelines Working Group Cancer, pregnancy and fertility: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2013;24((Suppl. S6)):vi160–vi170. doi: 10.1093/annonc/mdt199. [DOI] [PubMed] [Google Scholar]
- 586.Kornovski Y., Ivanova Y., Kostov S., Slavchev S., Yordanov A. Gynaecological oncologic diseases and pregnancy. Wiad. Lek. 2021;74:1984–1987. doi: 10.36740/WLek202108135. [DOI] [PubMed] [Google Scholar]
- 587.Kuczborska K., Kacperczyk-Bartnik J., Wolska M., Pluta M., Bartnik P., Dobrowolska-Redo A., Romejko-Wolniewicz E. Secondary cervical cancer prevention in routine prenatal care-coverage, results and lessons for the future. Ginekol. Pol. 2019;90:396–402. doi: 10.5603/GP.2019.0068. [DOI] [PubMed] [Google Scholar]
- 588.Suchońska B., Gajewska M., Madej A., Wielgoś M. Cervical intraepithelial neoplasia during pregnancy. Indian J. Cancer. 2020;57:31–35. doi: 10.4103/ijc.ijc_403_18. [DOI] [PubMed] [Google Scholar]
- 589.Morice P., Uzan C., Gouy S., Verschraegen C., Haie-Meder C. Gynaecological cancers in pregnancy. Lancet. 2012;379:558–569. doi: 10.1016/S0140-6736(11)60829-5. [DOI] [PubMed] [Google Scholar]
- 590.Gu L., Hu Y., Wei Y., Hong Z., Zhang Y., Lin J., Qiu L., Di W. Optimising cervical cancer screening during pregnancy: A study of liquid-based cytology and HPV DNA co-test. Epidemiol. Infect. 2024;152:e25. doi: 10.1017/S095026882400013X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 591.Gourley C., Monaghan H., Beattie G., Court S., Love C., Gabra H. Intra-uterine death resulting from placental metastases in adenocarcinoma of unknown primary. Clin. Oncol. (R. Coll. Radiol.) 2002;14:213–216. doi: 10.1053/clon.2002.0074. [DOI] [PubMed] [Google Scholar]
- 592.Kochman A.T., Rabczyński J.K., Baranowski W., Pałczyński B., Kowalski P. Metastases to the products of conception from a maternal bronchial carcinoma. A case report and review of literature. Pol. J. Pathol. 2001;52:137–140. [PubMed] [Google Scholar]
- 593.Oh C.S., Sher E.F., Bieber A.K. Melanoma in pregnancy. Semin. Perinatol. 2025;49:152040. doi: 10.1016/j.semperi.2025.152040. [DOI] [PubMed] [Google Scholar]
- 594.Kudo R., Matsumoto K., Ishiguro T., Sekizuka T., Nishijima K., Enomoto T., Yoshihara K. Appendiceal cancer in pregnancy and circulating tumor cells detection in the umbilical cord. Heliyon. 2025;11:e42411. doi: 10.1016/j.heliyon.2025.e42411. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 595.Khazzaka A., Rassy E., Sleiman Z., Boussios S., Pavlidis N. Systematic review of fetal and placental metastases among pregnant patients with cancer. Cancer Treat. Rev. 2022;104:102356. doi: 10.1016/j.ctrv.2022.102356. [DOI] [PubMed] [Google Scholar]
- 596.Eltorky M., Khare V.K., Osborne P., Shanklin D.R. Placental metastasis from maternal carcinoma. A report of three cases. J. Reprod. Med. 1995;40:399–403. [PubMed] [Google Scholar]
- 597.Read E.J., Jr., Platzer P.B. Placental metastasis from maternal carcinoma of the lung. Obstet. Gynecol. 1981;58:387–391. [PubMed] [Google Scholar]
- 598.Glanc P. Fetal and placental metastases associated with maternal cancers. Abdom. Radiol. 2023;48:1784–1792. doi: 10.1007/s00261-023-03852-x. [DOI] [PubMed] [Google Scholar]
- 599.Perret-Court A., Fernandez C., Monestier S., Millet V., Tasei A.M. Placental metastasis of melanoma: A new case and literature review. Ann. Pathol. 2010;30:143–146. doi: 10.1016/j.annpat.2009.10.037. [DOI] [PubMed] [Google Scholar]
- 600.Lai J.K., Panasci L., Patey N.G., Wang H. Placental metastasis from maternal NUT carcinoma: Diagnostic pitfalls and challenges. BMJ Case Rep. 2024;17:e259538. doi: 10.1136/bcr-2023-259538. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 601.Potter J.F. Metastasis of maternal cancer to placenta and fetus. Am. J. Obstet. Gynecol. 1969;105:105–645. doi: 10.1002/1097-0142(197002)25:2<380::AID-CNCR2820250216>3.0.CO;2-Q. [DOI] [PubMed] [Google Scholar]
- 602.Potter J.F., Schoeneman M. Metastasis of maternal cancer to the placenta and fetus. Cancer. 1970;25:380–388. doi: 10.1002/1097-0142(197002)25:2<380::AID-CNCR2820250216>3.0.CO;2-Q. [DOI] [PubMed] [Google Scholar]
- 603.Burmeister C.A., Khan S.F., Schäfer G., Mbatani N., Adams T., Moodley J., Prince S. Cervical cancer therapies: Current challenges and future perspectives. Tumour Virus Res. 2022;13:200238. doi: 10.1016/j.tvr.2022.200238. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 604. [(accessed on 4 June 2025)]. Available online: https://www.nccn.org/professionals/physician_gls/pdf/cervical.pdf.
- 605.de Haan J., Verheecke M., Van Calsteren K., Van Calster B., Shmakov R.G., Mhallem Gziri M., Halaska M.J., Fruscio R., Lok C.A.R., Boere I.A., et al. Oncological management and obstetric and neonatal outcomes for women diagnosed with cancer during pregnancy: A 20-year international cohort study of 1170 patients. Lancet Oncol. 2018;19:337–346. doi: 10.1016/S1470-2045(18)30059-7. [DOI] [PubMed] [Google Scholar]
- 606.Fukushima K., Ogawa S., Tsukimori K., Kobayashi H., Wake N. Can we diagnose invasive cervical cancer during pregnancy as precise as in nonpregnant women? maternal and perinatal outcome in pregnancies complicated with cervical cancers. Int. J. Gynecol. Cancer. 2009;19:1439–1445. doi: 10.1111/IGC.0b013e3181a83ebf. [DOI] [PubMed] [Google Scholar]
- 607.Swenson R.E., Goff B.A., Koh W.-J. Cancer in the pregnant patient. In: Hoskins W.J., Perez C.A., Young R.C., editors. Principles and Practice of Gynecologic Oncology. 4th ed. Lippincott Williams & Wilkins; Philadelphia, PA, USA: 2004. pp. 1279–1311. [Google Scholar]
- 608.Sadler L., Sykes P. How little is known about cervical cancer in pregnancy? Ann. Oncol. 2005;16:341–343. doi: 10.1093/annonc/mdi139. [DOI] [PubMed] [Google Scholar]
- 609.Sood A.K., Sorosky J.I. Invasive cervical cancer complicating pregnancy. How to manage the dilemma. Obstet. Gynecol. Clin. N. Am. 1998;25:343–352. doi: 10.1016/S0889-8545(05)70009-7. [DOI] [PubMed] [Google Scholar]
- 610.van de Nieuwenhof H.P., van Ham M.A., Lotgering F.K., Massuger L.F. First case of vaginal radical trachelectomy in a pregnant patient. Int. J. Gynecol. Cancer. 2008;18:1381–1385. doi: 10.1111/j.1525-1438.2008.01193.x. [DOI] [PubMed] [Google Scholar]
- 611.Ben-Arie A., Levy R., Lavie O., Edwards C., Kaplan A. Conservative treatment of stage IA2 squamous cell carcinoma of the cervix during pregnancy. Obstet. Gynecol. 2004;104:1129–1131. doi: 10.1097/01.AOG.0000143261.45225.ec. [DOI] [PubMed] [Google Scholar]
- 612.Gurney E.P., Blank S.V. Postpartum radical trachelectomy for IB1 squamous cell carcinoma of the cervix diagnosed in pregnancy. Am. J. Obstet. Gynecol. 2009;201:e8–e10. doi: 10.1016/j.ajog.2009.06.072. [DOI] [PubMed] [Google Scholar]
- 613.Abu-Rustum N.R., Tal M.N., DeLair D., Shih K., Sonoda Y. Radical abdominal trachelectomy for stage IB1 cervical cancer at 15-week gestation. Gynecol. Oncol. 2010;116:151–152. doi: 10.1016/j.ygyno.2009.10.042. [DOI] [PubMed] [Google Scholar]
- 614.Azim H.A., Jr., Peccatori F.A., Pavlidis N. Treatment of the pregnant mother with cancer: A systematic review on the use of cytotoxic, endocrine, targeted agents and immunotherapy during pregnancy. Part I: Solid tumors. Cancer Treat. Rev. 2010;36:101–109. doi: 10.1016/j.ctrv.2009.11.007. [DOI] [PubMed] [Google Scholar]
- 615.Meric-Bernstam F., Makker V., Oaknin A., Oh D.Y., Banerjee S., González-Martín A., Jung K.H., Ługowska I., Manso L., Manzano A., et al. Efficacy and Safety of Trastuzumab Deruxtecan in Patients with HER2-Expressing Solid Tumors: Primary Results From the DESTINY-PanTumor02 Phase II Trial. J. Clin. Oncol. 2024;42:47–58. doi: 10.1200/JCO.23.02005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 616.Marabelle A., Le D.T., Ascierto P.A., Di Giacomo A.M., De Jesus-Acosta A., Delord J.P., Geva R., Gottfried M., Penel N., Hansen A.R., et al. Efficacy of pembrolizumab in patients with noncolorectal high microsatellite instability/mismatch repair-deficient cancer: Results from the phase 2 KEYNOTE-158 study. J. Clin. Oncol. 2020;38:1–10. doi: 10.1200/JCO.19.02105. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 617.Minion L.E., Tewari K.S. Cervical cancer—State of science: From angiogenesis blockade to checkpoint inhibition. Gynecol. Oncol. 2018;148:609–621. doi: 10.1016/j.ygyno.2018.01.009. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 618.Chung H.C., Schellens J.H., Delord J.-P., Perets R., Italiano A., Shapira-Frommer R., Manzuk L., Piha-Paul S.A., Wang J., Zeigenfuss S., et al. Pembrolizumab treatment of advanced cervical cancer: Updated results from the phase 2 KEYNOTE-158 study. J. Clin. Oncol. 2018;36((Suppl. S15)):5522. doi: 10.1200/JCO.2018.36.15_suppl.5522. [DOI] [Google Scholar]
- 619.Merino D.M., McShane L.M., Fabrizio D., Funari V., Chen S.J., White J.R., Wenz P., Baden J., Barrett J.C., Chaudhary R., et al. Establishing guidelines to harmonize tumor mutational burden (TMB): In silico assessment of variation in TMB quantification across diagnostic platforms: Phase I of the Friends of Cancer Research TMB Harmonization Project. J. Immunother. Cancer. 2020;8:e000147. doi: 10.1136/jitc-2019-000147. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 620.Sanguedolce F., Zanelli M., Palicelli A., Bisagni A., Zizzo M., Ascani S., Pedicillo M.C., Cormio A., Falagario U.G., Carrieri G., et al. HER2 Expression in Bladder Cancer: A Focused View on Its Diagnostic, Prognostic, and Predictive Role. Int. J. Mol. Sci. 2023;24:3720. doi: 10.3390/ijms24043720. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 621.Tuninetti V., Pace L., Ghisoni E., Quarà V., Arezzo F., Palicelli A., Mandato V.D., Geuna E., Cormio G., Biglia N., et al. Retrospective Analysis of the Correlation of MSI-h/dMMR Status and Response to Therapy for Endometrial Cancer: RAME Study, a Multicenter Experience. Cancers. 2023;15:3639. doi: 10.3390/cancers15143639. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 622.Tang D., Fu P., Zhao L.H. HER2 amplification and PD-L1 expression in invasive stratified mucin-producing carcinoma of the cervix: A clinicopathological analysis of eighteen cases. Zhonghua Bing Li Xue Za Zhi. 2024;53:1018–1023. doi: 10.3760/cma.j.cn112151-20240301-00144. [DOI] [PubMed] [Google Scholar]
- 623.Qiu H., Wang M., Wang D., Wang Y., Su N., Yan S., Han L., Guo R. Efficacy of PD-1/PD-L1 blockade immunotherapy in recurrent/metastatic high-grade neuroendocrine carcinoma of the cervix: A retrospective study. Heliyon. 2024;10:e37503. doi: 10.1016/j.heliyon.2024.e37503. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 624.Cimic A., Vranic S., Arguello D., Contreras E., Gatalica Z., Swensen J. Molecular Profiling Reveals Limited Targetable Biomarkers in Neuroendocrine Carcinoma of the Cervix. Appl. Immunohistochem. Mol. Morphol. 2021;29:299–304. doi: 10.1097/PAI.0000000000000884. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 625.Anju G., Rao M., Elhence P.A., Nalwa A., Singh P., Yadav G., Goel A.D., Thiruvengadam D. Expression of Programmed Death Ligand 1 [PD-L1] and Mismatch Repair Status in Squamous Cell Carcinomas of Cervix. J. Obstet. Gynaecol. India. 2024;74:319–325. doi: 10.1007/s13224-023-01837-w. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 626.File B., Hari A. Discrepancy in PD-L1 expression between primary and metastatic tumors in two patients with recurrent cervical cancer. Gynecol. Oncol. Rep. 2024;55:101484. doi: 10.1016/j.gore.2024.101484. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 627.Chen L., Yang F., Feng T., Wu S., Li K., Pang J., Shi X., Liang Z. PD-L1, Mismatch Repair Protein, and NTRK Immunohistochemical Expression in Cervical Small Cell Neuroendocrine Carcinoma. Front. Oncol. 2021;11:752453. doi: 10.3389/fonc.2021.752453. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 628.Tewari K.S. Immune Checkpoint Blockade in PD-L1-Positive Platinum-Refractory Cervical Carcinoma. J. Clin. Oncol. 2019;37:1449–1454. doi: 10.1200/JCO.19.00119. [DOI] [PubMed] [Google Scholar]
- 629.Reddy O.L., Shintaku P.I., Moatamed N.A. Programmed death-ligand 1 (PD-L1) is expressed in a significant number of the uterine cervical carcinomas. Diagn. Pathol. 2017;12:45. doi: 10.1186/s13000-017-0631-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 630.Mandal J., Jamaiyar A., Pathak S. Role of HER-2/Neu Expression in Premalignant and Malignant Lesions of the Uterine Cervix: A Pathological Study. Cureus. 2025;17:e78211. doi: 10.7759/cureus.78211. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 631.Varshney S., Maheshwari V., Aijaz M., Alam K. Role and significance of HER-2/neu as a biomarker in the premalignant and malignant lesions of uterine cervix. Ann. Diagn. Pathol. 2020;45:151443. doi: 10.1016/j.anndiagpath.2019.151443. [DOI] [PubMed] [Google Scholar]
- 632.Protrka Z., Arsenijević S., Arsenijević P., Mitrović S., Stanković V., Milosavljević M., Nedović J., Kastratović T., Durić J. Prognostic significance of co-overexpression of bcl-2 and c-erbB-2/neu in uterine cervix carcinomas and premalignant lesions. Med. Glas. 2012;9:248–255. [PubMed] [Google Scholar]
- 633.Gupta N., Singh S., Marwah N., Kumar S., Chabra S., Sen R. HER-2/neu expression in lesions of uterine cervix: Is it reliable and consistent? Indian J. Pathol. Microbiol. 2009;52:482–485. doi: 10.4103/0377-4929.56127. [DOI] [PubMed] [Google Scholar]
- 634.Miyama Y., Kato T., Sato M., Yabuno A., Hasegawa K., Yasuda M. Cervical lymphoepithelioma-like carcinoma with deficient mismatch repair and loss of SMARCA4/BRG1: A case report and five related cases. Diagn. Pathol. 2024;19:6. doi: 10.1186/s13000-023-01429-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 635.Bulutay P., Eren Ö.C., Özen Ö., Haberal A.N., Kapucuoğlu N. Clear cell carcinoma of the uterine cervix; an unusual HPV-independent tumor: Clinicopathological features, PD-L1 expression, and mismatch repair protein deficiency status of 16 cases. Turk. J. Obstet. Gynecol. 2023;20:164–173. doi: 10.4274/tjod.galenos.2023.62819. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 636.Mukonoweshuro P., McCluggage W.G. Clear cell carcinoma of the cervix with choriocarcinomatous differentiation: Report of an extremely rare phenomenon associated with mismatch repair protein abnormality. Int. J. Gynecol. Pathol. 2017;36:323–327. doi: 10.1097/PGP.0000000000000328. [DOI] [PubMed] [Google Scholar]
- 637.Ciavattini A., Piccioni M., Tranquilli A.L., Filosa A., Pieramici T., Goteri G. Immunohistochemical expression of DNA mismatch repair (MMR) system proteins (hMLH1, hMSH2) in cervical preinvasive and invasive lesions. Pathol. Res. Pract. 2005;201:21–25. doi: 10.1016/j.prp.2004.09.012. [DOI] [PubMed] [Google Scholar]
- 638.Jiménez P., Cantón J., Concha A., Torres L.M., Abril E., Real L.M., García A., Garrido F., Ruiz-Cabello F. Microsatellite instability in cervical intraepithelial neoplasia. J. Exp. Clin. Cancer Res. 1998;17:361–366. [PubMed] [Google Scholar]
- 639.Albrektsen G., Heuch I., Hansen S., Kvåle G. Breast cancer risk by age at birth, time since birth and time intervals between births: Exploring interaction effects. Br. J. Cancer. 2005;92:167–175. doi: 10.1038/sj.bjc.6602302. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 640.Dai S., Jia R., Zhang X., Fang Q., Huang L. The PD-1/PD-Ls pathway and autoimmune diseases. Cell. Immunol. 2014;290:72–79. doi: 10.1016/j.cellimm.2014.05.006. [DOI] [PubMed] [Google Scholar]
- 641.Patsoukis N., Wang Q., Strauss L., Boussiotis V.A. Revisiting the PD-1 pathway. Sci. Adv. 2020;6:eabd2712. doi: 10.1126/sciadv.abd2712. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 642.Aguilar E.J., Ricciuti B., Gainor J.F., Kehl K.L., Kravets S., Dahlberg S., Nishino M., Sholl L.M., Adeni A., Subegdjo S., et al. Outcomes to first-line pembrolizumab in patients with non-small-cell lung cancer and very high PD-L1 expression. Ann. Oncol. 2019;30:1653–1659. doi: 10.1093/annonc/mdz288. [DOI] [PubMed] [Google Scholar]
- 643.Foy J.P., Karabajakian A., Ortiz-Cuaran S., Boussageon M., Michon L., Bouaoud J., Fekiri D., Robert M., Baffert K.A., Hervé G., et al. Immunologically active phenotype by gene expression profiling is associated with clinical benefit from PD-1/PD-L1 inhibitors in real-world head and neck and lung cancer patients. Eur. J. Cancer. 2022;174:287–298. doi: 10.1016/j.ejca.2022.06.034. [DOI] [PubMed] [Google Scholar]
- 644.Germanà E., Pepe L., Pizzimenti C., Ballato M., Pierconti F., Tuccari G., Ieni A., Giuffrè G., Fadda G., Fiorentino V., et al. Programmed Cell Death Ligand 1 (PD-L1) immunohistochemical expression in advanced urothelial bladder carcinoma: An updated review with clinical and pathological implications. Int. J. Mol. Sci. 2024;25:6750. doi: 10.3390/ijms25126750. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 645.Rhea L.P., Mendez-Marti S., Kim D., Aragon-Ching J.B. Role of immunotherapy in bladder cancer. Cancer Treat. Res. Commun. 2021;26:100296. doi: 10.1016/j.ctarc.2020.100296. [DOI] [PubMed] [Google Scholar]
- 646.Maiorano B.A., Di Maio M., Cerbone L., Maiello E., Procopio G., Roviello G., MeetURO Group Significance of PD-L1 in metastatic urothelial carcinoma treated with immune checkpoint inhibitors: A systematic review and meta-analysis. JAMA Netw. Open. 2024;7:e241215. doi: 10.1001/jamanetworkopen.2024.1215. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 647.Palicelli A., Croci S., Bisagni A., Zanetti E., De Biase D., Melli B., Sanguedolce F., Ragazzi M., Zanelli M., Chaux A., et al. What Do We Have to Know about PD-L1 Expression in Prostate Cancer? A Systematic Literature Review. Part 5: Epigenetic Regulation of PD-L1. Int. J. Mol. Sci. 2021;22:12314. doi: 10.3390/ijms222212314. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 648.Motzer R.J., Schmidinger M., Eto M., Suarez C., Figlin R., Liu Y., Perini R., Zhang Y., Heng D.Y. LITESPARK-011: Belzutifan plus lenvatinib vs cabozantinib in advanced renal cell carcinoma after anti-PD-1/PD-L1 therapy. Future Oncol. 2023;19:113–121. doi: 10.2217/fon-2022-0802. [DOI] [PubMed] [Google Scholar]
- 649.Paver E.C., Cooper W.A., Colebatch A.J., Ferguson P.M., Hill S.K., Lum T., Shin J.S., O’Toole S., Anderson L., Scolyer R.A., et al. Programmed death ligand-1 (PD-L1) as a predictive marker for immunotherapy in solid tumours: A guide to immunohistochemistry implementation and interpretation. Pathology. 2021;53:141–156. doi: 10.1016/j.pathol.2020.10.007. [DOI] [PubMed] [Google Scholar]
- 650.Palicelli A., Bonacini M., Croci S., Magi-Galluzzi C., Cañete-Portillo S., Chaux A., Bisagni A., Zanetti E., De Biase D., Melli B., et al. What Do We Have to Know about PD-L1 Expression in Prostate Cancer? A Systematic Literature Review. Part 1: Focus on Immunohistochemical Results with Discussion of Pre-Analytical and Interpretation Variables. Cells. 2021;10:3166. doi: 10.3390/cells10113166. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 651.Palicelli A., Bonacini M., Croci S., Magi-Galluzzi C., Cañete-Portillo S., Chaux A., Bisagni A., Zanetti E., De Biase D., Melli B., et al. What Do We Have to Know about PD-L1 Expression in Prostate Cancer? A Systematic Literature Review. Part 2: Clinic-Pathologic Correlations. Cells. 2021;10:3165. doi: 10.3390/cells10113165. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 652.Kato R., Obara W. Anti-PD-1/PD-L1 therapy for renal cell carcinoma: Challenges in the development of predictive biomarkers. Expert. Rev. Anticancer Ther. 2022;22:667–669. doi: 10.1080/14737140.2022.2087631. [DOI] [PubMed] [Google Scholar]
- 653.Habibi M.A., Mirjani M.S., Ahmadvand M.H., Delbari P., Eftekhar M.S., Ghazizadeh Y., Ghezel M.A., Rad R.H., Vakili K.G., Lotfi S., et al. Anti-PD-1/PD-L1 inhibitor therapy for melanoma brain metastases: A systematic review and meta-analysis. Neurosurg. Rev. 2024;47:434. doi: 10.1007/s10143-024-02595-7. [DOI] [PubMed] [Google Scholar]
- 654.Frydenlund N., Mahalingam M. PD-L1 and immune escape: Insights from melanoma and other lineage-unrelated malignancies. Hum. Pathol. 2017;66:13–33. doi: 10.1016/j.humpath.2017.06.012. [DOI] [PubMed] [Google Scholar]
- 655.Gentzler R., Hall R., Kunk P.R., Gaughan E., Dillon P., Slingluff C.L., Jr., Rahma O.E. Beyond melanoma: Inhibiting the PD-1/PD-L1 pathway in solid tumors. Immunotherapy. 2016;8:583–600. doi: 10.2217/imt-2015-0029. [DOI] [PubMed] [Google Scholar]
- 656.Zanelli M., Fragliasso V., Parente P., Bisagni A., Sanguedolce F., Zizzo M., Broggi G., Ricci S., Palicelli A., Foroni M., et al. Programmed Death Ligand 1 (PD-L1) Expression in Lymphomas: State of the Art. Int. J. Mol. Sci. 2024;25:6447. doi: 10.3390/ijms25126447. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 657.Sanguedolce F., Falagario U.G., Zanelli M., Palicelli A., Zizzo M., Busetto G.M., Cormio A., Carrieri G., Cormio L. Integrating the PD-L1 Prognostic Biomarker in Non-Muscle Invasive Bladder Cancer in Clinical Practice-A Comprehensive Review on State-of-the-Art Advances and Critical Issues. J. Clin. Med. 2024;13:2182. doi: 10.3390/jcm13082182. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 658.Koufopoulos N., Ieronimaki A.I., Zacharatou A., Gouloumis A.R., Leventakou D., Boutas I., Dimas D.T., Kontogeorgi A., Sitara K., Khaldi L., et al. A Case of Prostatic Signet-Ring Cell-like Carcinoma with Pagetoid Spread and Intraductal Carcinoma and Long-Term Survival: PD-L1 and Mismatch Repair System Proteins (MMR) Immunohistochemical Evaluation with Systematic Literature Review. J. Pers. Med. 2023;13:1016. doi: 10.3390/jpm13061016. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 659.Ramnaraign B.H., Lee J.H., Ali A., Rogers S.C., Fabregas J.C., Thomas R.M., Allegra C.J., Sahin I., DeRemer D.L., George T.J., et al. Atezolizumab plus tivozanib for immunologically cold tumor types: The IMMCO-1 trial. Future Oncol. 2022;18:3815–3822. doi: 10.2217/fon-2022-0392. Epub ahead of print . [DOI] [PubMed] [Google Scholar]
- 660.Lin K.X., Istl A.C., Quan D., Skaro A., Tang E., Zheng X. PD-1 and PD-L1 inhibitors in cold colorectal cancer: Challenges and strategies. Cancer Immunol. Immunother. 2023;72:3875–3893. doi: 10.1007/s00262-023-03520-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 661.Khosravi G.R., Mostafavi S., Bastan S., Ebrahimi N., Gharibvand R.S., Eskandari N. Immunologic tumor microenvironment modulators for turning cold tumors hot. Cancer Commun. 2024;44:521–553. doi: 10.1002/cac2.12539. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 662.Zhou F., Li X., Xue X., Li S., Fan G., Cai Y., Chang Z., Qu J., Liu R. A Novel Tri-Functional Liposome Re-Educates “Cold Tumor” and Abrogates Tumor Growth by Synergizing Autophagy Inhibition and PD-L1 Blockade. Adv. Healthc. Mater. 2023;12:e2202757. doi: 10.1002/adhm.202202757. [DOI] [PubMed] [Google Scholar]
- 663.Palicelli A., Bonacini M., Croci S., Bisagni A., Zanetti E., De Biase D., Sanguedolce F., Ragazzi M., Zanelli M., Chaux A., et al. What Do We Have to Know about PD-L1 Expression in Prostate Cancer? A Systematic Literature Review. Part 7: PD-L1 Expression in Liquid Biopsy. J. Pers. Med. 2021;11:1312. doi: 10.3390/jpm11121312. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 664.Palicelli A., Croci S., Bisagni A., Zanetti E., De Biase D., Melli B., Sanguedolce F., Ragazzi M., Zanelli M., Chaux A., et al. What Do We Have to Know about PD-L1 Expression in Prostate Cancer? A Systematic Literature Review. Part 3: PD-L1, Intracellular Signaling Pathways and Tumor Microenvironment. Int. J. Mol. Sci. 2021;22:12330. doi: 10.3390/ijms222212330. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 665.Shi W., Liu N., Liu Z., Yang Y., Zeng Q., Wang Y., Song L., Hu F., Fu J., Chen J., et al. Next-generation anti-PD-L1/IL-15 immunocytokine elicits superior antitumor immunity in cold tumors with minimal toxicity. Cell Rep. Med. 2024;5:101531. doi: 10.1016/j.xcrm.2024.101531. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 666.Palicelli A., Croci S., Bisagni A., Zanetti E., De Biase D., Melli B., Sanguedolce F., Ragazzi M., Zanelli M., Chaux A., et al. What Do We Have to Know about PD-L1 Expression in Prostate Cancer? A Systematic Literature Review. Part 4: Experimental Treatments in Pre-Clinical Studies (Cell Lines and Mouse Models) Int. J. Mol. Sci. 2021;22:12297. doi: 10.3390/ijms222212297. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 667.Colombo N., Dubot C., Lorusso D., Caceres M.V., Hasegawa K., Shapira-Frommer R., Tewari K.S., Salman P., Usta E.H., Yañez E., et al. Pembrolizumab for persistent, recurrent, or metastatic cervical cancer. N. Engl. J. Med. 2021;385:1856–1867. doi: 10.1056/NEJMoa2112435. [DOI] [PubMed] [Google Scholar]
- 668.Monk B.J., Colombo N., Tewari K.S., Dubot C., Caceres M.V., Hasegawa K., Shapira-Frommer R., Salman P., Yañez E., Gümüş M., et al. First-Line pembrolizumab + chemotherapy versus placebo + chemotherapy for persistent, recurrent, or metastatic cervical cancer: Final overall survival results of KEYNOTE-826. J. Clin. Oncol. 2023;41:5505–5511. doi: 10.1200/JCO.23.00914. [DOI] [PubMed] [Google Scholar]
- 669.Frenel J.S., Le Tourneau C., O’Neil B., Ott P.A., Piha-Paul S.A., Gomez-Roca C., van Brummelen E.M.J., Rugo H.S., Thomas S., Saraf S., et al. Safety and Efficacy of Pembrolizumab in Advanced, Programmed Death Ligand 1-Positive Cervical Cancer: Results From the Phase Ib KEYNOTE-028 Trial. J. Clin. Oncol. 2017;35:4035–4041. doi: 10.1200/JCO.2017.74.5471. [DOI] [PubMed] [Google Scholar]
- 670.Maio M., Ascierto P.A., Manzyuk L., Motola-Kuba D., Penel N., Cassier P.A., Bariani G.M., De Jesus Acosta A., Doi T., Longo F., et al. Pembrolizumab in microsatellite instability high or mismatch repair deficient cancers: Updated analysis from the phase II KEYNOTE-158 study. Ann. Oncol. 2022;33:929–938. doi: 10.1016/j.annonc.2022.05.519. [DOI] [PubMed] [Google Scholar]
- 671.Chung H.C., Ros W., Delord J.P., Perets R., Italiano A., Shapira-Frommer R., Manzuk L., Piha-Paul S.A., Xu L., Zeigenfuss S., et al. Efficacy and Safety of Pembrolizumab in Previously Treated Advanced Cervical Cancer: Results From the Phase II KEYNOTE-158 Study. J. Clin. Oncol. 2019;37:1470–1478. doi: 10.1200/JCO.18.01265. [DOI] [PubMed] [Google Scholar]
- 672.Oaknin A., Monk B., Polastro L., de Melo A.C., Kim H.S., Kim Y.M., Lisyanskaya A.S., Samouëlian V., Lorusso D., Damian F.B., et al. 519MO Phase III EMPOWERCervical 1/GOG-3016/ENGOT-cx9 trial of cemiplimab in recurrent or metastatic (R/M) cervical cancer: Long-term survival analysis. Ann. Oncol. 2022;33:S781. doi: 10.1016/j.annonc.2022.07.647. [DOI] [Google Scholar]




