Skip to main content
Annals of Surgery logoLink to Annals of Surgery
. 1993 Oct;218(4):492–503. doi: 10.1097/00000658-199310000-00009

Combination anti-CD2 and anti-CD3 monoclonal antibodies induce tolerance while altering interleukin-2, interleukin-4, tumor necrosis factor, and transforming growth factor-beta production.

K D Chavin 1, L Qin 1, J Lin 1, J E Woodward 1, P Baliga 1, J S Bromberg 1
PMCID: PMC1243005  PMID: 8215640

Abstract

OBJECTIVE: These studies were designed to elucidate the mechanism by which signals delivered by anti-CD2 monoclonal antibody (MoAb) interfere with activational signals delivered by anti-CD3 MoAb and induce long-term graft survival and tolerance. SUMMARY BACKGROUND DATA: Anti-CD2 or anti-CD3 MoAb can prolong allograft survival when administered alone. In combination, they synergistically prolong survival while reducing anti-CD3-associated cytokine toxicity. It was postulated that the mechanism of synergism and reduced cytokine toxicity was related to anti-CD2-induced alterations in anti-CD3-induced T-cell activation. METHODS: C57BL/6 (H-2b) mouse hearts were transplanted to CBA (H-2k) mice. The recipients received anti-CD2 and/or anti-CD3 MoAb intravenously only at the time of initial allografting. Serum from treated animals and culture supernatants from lymphocytes stimulated in vitro with anti-CD3 were examined for interleukin (IL)-2, -4, -6, and -10, tumor necrosis factor (TNF), and transforming growth factor-beta (TGF beta). RNA was isolated from lymphocytes from treated animals and examined for receptor and cytokine gene expression by northern hybridization or reverse transcribed and amplified by the polymerase chain reaction (PCR). RESULTS: Anti-CD2 and anti-CD3 MoAbs alone prolonged graft survival (22.0 +/- 0.5 days and 28.0 +/- 0.5 days, respectively; p < 0.02 and p < 0.01 vs. control, by Wilcoxon signed-rank test). Combined anti-CD2/anti-CD3 MoAbs synergistically prolonged survival indefinitely (> 150 days, p < 0.01) while decreasing cytokine toxicity. Second donor-specific allografts also showed long-term survival. The peak serum TNF concentration (2100 units/mL) was reduced 78% by anti-CD2 treatment (455 units/mL). Anti-CD2 inhibited anti-CD3-stimulated proliferation and in vitro production of IL-2 and IL-4, with no alteration of IL-6, IL-10, or TNF. Conversely, there was an increase in the immunosuppressive cytokine TGF beta. PCR analysis showed that anti-CD2 reduced anti-CD3-stimulated IL-2 messenger RNA expression, and by northern analysis, anti-CD2 inhibited anti-CD3-stimulated increases in messenger RNA for the CD2 and CD3 receptors themselves. CONCLUSIONS: The combination of anti-CD2 and anti-CD3 MoAbs induced a state of tolerance while decreasing anti-CD3-associated cytokine toxicity. The mechanism was related to anti-CD2-generated alterations in T-cell activation and gene expression.

Full text

PDF
492

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alegre M. L., Gastaldello K., Abramowicz D., Kinnaert P., Vereerstraeten P., De Pauw L., Vandenabeele P., Moser M., Leo O., Goldman M. Evidence that pentoxifylline reduces anti-CD3 monoclonal antibody-induced cytokine release syndrome. Transplantation. 1991 Oct;52(4):674–679. doi: 10.1097/00007890-199110000-00018. [DOI] [PubMed] [Google Scholar]
  2. Alegre M. L., Vandenabeele P., Depierreux M., Florquin S., Deschodt-Lanckman M., Flamand V., Moser M., Leo O., Urbain J., Fiers W. Cytokine release syndrome induced by the 145-2C11 anti-CD3 monoclonal antibody in mice: prevention by high doses of methylprednisolone. J Immunol. 1991 Feb 15;146(4):1184–1191. [PubMed] [Google Scholar]
  3. Alegre M., Vandenabeele P., Flamand V., Moser M., Leo O., Abramowicz D., Urbain J., Fiers W., Goldman M. Hypothermia and hypoglycemia induced by anti-CD3 monoclonal antibody in mice: role of tumor necrosis factor. Eur J Immunol. 1990 Mar;20(3):707–710. doi: 10.1002/eji.1830200337. [DOI] [PubMed] [Google Scholar]
  4. Altevogt P., Kohl U., Von Hoegen P., Lang E., Schirrmacher V. Antibody 12-15 cross-reacts with mouse Fc gamma receptors and CD2: study of thymus expression, genetic polymorphism and biosynthesis of the CD2 protein. Eur J Immunol. 1989 Feb;19(2):341–346. doi: 10.1002/eji.1830190219. [DOI] [PubMed] [Google Scholar]
  5. Baker P. E., Gillis S., Smith K. A. Monoclonal cytolytic T-cell lines. J Exp Med. 1979 Jan 1;149(1):273–278. doi: 10.1084/jem.149.1.273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bromberg J. S., Chavin K. D., Altevogt P., Kyewski B. A., Guckel B., Naji A., Barker C. F. Anti-CD2 monoclonal antibodies alter cell-mediated immunity in vivo. Transplantation. 1991 Jan;51(1):219–225. doi: 10.1097/00007890-199101000-00036. [DOI] [PubMed] [Google Scholar]
  7. Chavin K. D., Lau H. T., Bromberg J. S. Prolongation of allograft and xenograft survival in mice by anti-CD2 monoclonal antibodies. Transplantation. 1992 Aug;54(2):286–291. doi: 10.1097/00007890-199208000-00018. [DOI] [PubMed] [Google Scholar]
  8. Chavin K. D., Qin L., Lin J., Kaplan A. J., Bromberg J. S. Anti-CD2 and anti-CD3 monoclonal antibodies synergize to prolong allograft survival with decreased side effects. Transplantation. 1993 Apr;55(4):901–908. doi: 10.1097/00007890-199304000-00040. [DOI] [PubMed] [Google Scholar]
  9. Cosimi A. B., Burton R. C., Colvin R. B., Goldstein G., Delmonico F. L., LaQuaglia M. P., Tolkoff-Rubin N., Rubin R. H., Herrin J. T., Russell P. S. Treatment of acute renal allograft rejection with OKT3 monoclonal antibody. Transplantation. 1981 Dec;32(6):535–539. doi: 10.1097/00007890-198112000-00018. [DOI] [PubMed] [Google Scholar]
  10. Danielpour D., Dart L. L., Flanders K. C., Roberts A. B., Sporn M. B. Immunodetection and quantitation of the two forms of transforming growth factor-beta (TGF-beta 1 and TGF-beta 2) secreted by cells in culture. J Cell Physiol. 1989 Jan;138(1):79–86. doi: 10.1002/jcp.1041380112. [DOI] [PubMed] [Google Scholar]
  11. FULMER R. I., CRAMER A. T., LIEBELT R. A., LIEBELT A. G. TRANSPLANTATION OF CARDIAC TISSUE INTO THE MOUSE EAR. Am J Anat. 1963 Sep;113:273–285. doi: 10.1002/aja.1001130206. [DOI] [PubMed] [Google Scholar]
  12. Ferran C., Dy M., Merite S., Sheehan K., Schreiber R., Leboulenger F., Landais P., Bluestone J., Bach J. F., Chatenoud L. Reduction of morbidity and cytokine release in anti-CD3 MoAb-treated mice by corticosteroids. Transplantation. 1990 Oct;50(4):642–648. doi: 10.1097/00007890-199010000-00023. [DOI] [PubMed] [Google Scholar]
  13. Ferran C., Sheehan K., Dy M., Schreiber R., Merite S., Landais P., Noel L. H., Grau G., Bluestone J., Bach J. F. Cytokine-related syndrome following injection of anti-CD3 monoclonal antibody: further evidence for transient in vivo T cell activation. Eur J Immunol. 1990 Mar;20(3):509–515. doi: 10.1002/eji.1830200308. [DOI] [PubMed] [Google Scholar]
  14. Ferran C., Sheehan K., Schreiber R., Bach J. F., Chatenoud L. Anti-TNF abrogates the cytokine-related anti-CD3 induced syndrome. Transplant Proc. 1991 Feb;23(1 Pt 1):849–850. [PubMed] [Google Scholar]
  15. Frenken L. A., Koene R. A., Tax W. J. The role of antibody isotype in IFN-gamma and IL-2 production during anti-CD3-induced T cell proliferation. Transplantation. 1991 Apr;51(4):881–887. doi: 10.1097/00007890-199104000-00028. [DOI] [PubMed] [Google Scholar]
  16. Friedrich B., Cantrell D. A., Gullberg M. Evidences for protein kinase C. Activation in T lymphocytes by stimulation of either the CD2 or CD3 antigens. Eur J Immunol. 1989 Jan;19(1):17–23. doi: 10.1002/eji.1830190104. [DOI] [PubMed] [Google Scholar]
  17. Furth M. E., Davis L. J., Fleurdelys B., Scolnick E. M. Monoclonal antibodies to the p21 products of the transforming gene of Harvey murine sarcoma virus and of the cellular ras gene family. J Virol. 1982 Jul;43(1):294–304. doi: 10.1128/jvi.43.1.294-304.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Gauchat J. F., Gauchat D., De Weck A. L., Stadler B. M. Cytokine mRNA levels in antigen-stimulated peripheral blood mononuclear cells. Eur J Immunol. 1989 Jun;19(6):1079–1085. doi: 10.1002/eji.1830190618. [DOI] [PubMed] [Google Scholar]
  19. Gerli R., Bertotto A., Crupi S., Arcangeli C., Marinelli I., Spinozzi F., Cernetti C., Angelella P., Rambotti P. Activation of cord T lymphocytes. I. Evidence for a defective T cell mitogenesis induced through the CD2 molecule. J Immunol. 1989 Apr 15;142(8):2583–2589. [PubMed] [Google Scholar]
  20. Gold D. P., Clevers H., Alarcon B., Dunlap S., Novotny J., Williams A. F., Terhorst C. Evolutionary relationship between the T3 chains of the T-cell receptor complex and the immunoglobulin supergene family. Proc Natl Acad Sci U S A. 1987 Nov;84(21):7649–7653. doi: 10.1073/pnas.84.21.7649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Guy R., Foo-Philips M., Sharrow S. O., Hodes R. J. Subpopulations of fetal thymocytes defined by expression of T cell receptor/CD3 and IL-2 receptor. CD3 and IL-2 receptor alpha-chain are expressed on reciprocal cell populations. J Immunol. 1991 Jan 15;146(2):418–424. [PubMed] [Google Scholar]
  22. Gückel B., Berek C., Lutz M., Altevogt P., Schirrmacher V., Kyewski B. A. Anti-CD2 antibodies induce T cell unresponsiveness in vivo. J Exp Med. 1991 Nov 1;174(5):957–967. doi: 10.1084/jem.174.5.957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Hirsch R., Bluestone J. A., DeNenno L., Gress R. E. Anti-CD3 F(ab')2 fragments are immunosuppressive in vivo without evoking either the strong humoral response or morbidity associated with whole mAb. Transplantation. 1990 Jun;49(6):1117–1123. doi: 10.1097/00007890-199006000-00018. [DOI] [PubMed] [Google Scholar]
  24. Hirsch R., Chatenoud L., Gress R. E., Sachs D. H., Bach J. F., Bluestone J. A. Suppression of the humoral response to anti-CD3 monoclonal antibody. Transplantation. 1989 May;47(5):853–857. doi: 10.1097/00007890-198905000-00021. [DOI] [PubMed] [Google Scholar]
  25. Hirsch R., Gress R. E., Pluznik D. H., Eckhaus M., Bluestone J. A. Effects of in vivo administration of anti-CD3 monoclonal antibody on T cell function in mice. II. In vivo activation of T cells. J Immunol. 1989 Feb 1;142(3):737–743. [PubMed] [Google Scholar]
  26. Isobe M., Yagita H., Okumura K., Ihara A. Specific acceptance of cardiac allograft after treatment with antibodies to ICAM-1 and LFA-1. Science. 1992 Feb 28;255(5048):1125–1127. doi: 10.1126/science.1347662. [DOI] [PubMed] [Google Scholar]
  27. Judd K. P., Trentin J. J. Cardiac transplantation in mice. I. Factors influencing the take and survival of heterotopic grafts. Transplantation. 1971 Mar;11(3):298–302. [PubMed] [Google Scholar]
  28. Krams S. M., Falco D. A., Villanueva J. C., Rabkin J., Tomlanovich S. J., Vincenti F., Amend W. J., Melzer J., Garovoy M. R., Roberts J. P. Cytokine and T cell receptor gene expression at the site of allograft rejection. Transplantation. 1992 Jan;53(1):151–156. doi: 10.1097/00007890-199201000-00031. [DOI] [PubMed] [Google Scholar]
  29. Lansdorp P. M., Aarden L. A., Calafat J., Zeiljemaker W. P. A growth-factor dependent B-cell hybridoma. Curr Top Microbiol Immunol. 1986;132:105–113. doi: 10.1007/978-3-642-71562-4_14. [DOI] [PubMed] [Google Scholar]
  30. Leo O., Foo M., Sachs D. H., Samelson L. E., Bluestone J. A. Identification of a monoclonal antibody specific for a murine T3 polypeptide. Proc Natl Acad Sci U S A. 1987 Mar;84(5):1374–1378. doi: 10.1073/pnas.84.5.1374. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Mizoguchi H., O'Shea J. J., Longo D. L., Loeffler C. M., McVicar D. W., Ochoa A. C. Alterations in signal transduction molecules in T lymphocytes from tumor-bearing mice. Science. 1992 Dec 11;258(5089):1795–1798. doi: 10.1126/science.1465616. [DOI] [PubMed] [Google Scholar]
  32. Mosmann T. R., Cherwinski H., Bond M. W., Giedlin M. A., Coffman R. L. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol. 1986 Apr 1;136(7):2348–2357. [PubMed] [Google Scholar]
  33. Ohara J., Paul W. E. Production of a monoclonal antibody to and molecular characterization of B-cell stimulatory factor-1. Nature. 1985 May 23;315(6017):333–336. doi: 10.1038/315333a0. [DOI] [PubMed] [Google Scholar]
  34. Pisa E. K., Pisa P., Hansson M., Wigzell H. OKT3-induced cytokine mRNA expression in human peripheral blood mononuclear cells measured by polymerase chain reaction. Scand J Immunol. 1992 Nov;36(5):745–749. doi: 10.1111/j.1365-3083.1992.tb03135.x. [DOI] [PubMed] [Google Scholar]
  35. Qin S., Cobbold S. P., Pope H., Elliott J., Kioussis D., Davies J., Waldmann H. "Infectious" transplantation tolerance. Science. 1993 Feb 12;259(5097):974–977. doi: 10.1126/science.8094901. [DOI] [PubMed] [Google Scholar]
  36. Quintáns J., Yokoyama A., Evavold B., Hirsch R., Mayforth R. D. Direct activation of murine resting T cells by con A or anti-CD3 Ig. J Mol Cell Immunol. 1989;4(4):225–237. [PubMed] [Google Scholar]
  37. Ruff M. R., Gifford G. E. Rabbit tumor necrosis factor: mechanism of action. Infect Immun. 1981 Jan;31(1):380–385. doi: 10.1128/iai.31.1.380-385.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Schall T. J., O'Hehir R. E., Goeddel D. V., Lamb J. R. Uncoupling of cytokine mRNA expression and protein secretion during the induction phase of T cell anergy. J Immunol. 1992 Jan 15;148(2):381–387. [PubMed] [Google Scholar]
  39. Vigeral P., Chkoff N., Chatenoud L., Campos H., Lacombe M., Droz D., Goldstein G., Bach J. F., Kreis H. Prophylactic use of OKT3 monoclonal antibody in cadaver kidney recipients. Utilization of OKT3 as the sole immunosuppressive agent. Transplantation. 1986 Jun;41(6):730–733. doi: 10.1097/00007890-198606000-00013. [DOI] [PubMed] [Google Scholar]
  40. Wallick S. C., Figari I. S., Morris R. E., Levinson A. D., Palladino M. A. Immunoregulatory role of transforming growth factor beta (TGF-beta) in development of killer cells: comparison of active and latent TGF-beta 1. J Exp Med. 1990 Dec 1;172(6):1777–1784. doi: 10.1084/jem.172.6.1777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Ward S. G., Ley S. C., MacPhee C., Cantrell D. A. Regulation of D-3 phosphoinositides during T cell activation via the T cell antigen receptor/CD3 complex and CD2 antigens. Eur J Immunol. 1992 Jan;22(1):45–49. doi: 10.1002/eji.1830220108. [DOI] [PubMed] [Google Scholar]
  42. Watson J. Continuous proliferation of murine antigen-specific helper T lymphocytes in culture. J Exp Med. 1979 Dec 1;150(6):1510–1519. doi: 10.1084/jem.150.6.1510. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Woodle E. S., Thistlethwaite J. R., Ghobrial I. A., Jolliffe L. K., Stuart F. P., Bluestone J. A. OKT3 F(ab')2 fragments--retention of the immunosuppressive properties of whole antibody with marked reduction in T cell activation and lymphokine release. Transplantation. 1991 Aug;52(2):354–360. doi: 10.1097/00007890-199108000-00033. [DOI] [PubMed] [Google Scholar]
  44. Woodle E. S., Thistlethwaite J. R., Jolliffe L. K., Fucello A. J., Stuart F. P., Bluestone J. A. Anti-CD3 monoclonal antibody therapy. An approach toward optimization by in vitro analysis of new anti-CD3 antibodies. Transplantation. 1991 Aug;52(2):361–368. [PubMed] [Google Scholar]
  45. Woodle E. S., Thistlethwaite J. R., Jolliffe L. K., Zivin R. A., Collins A., Adair J. R., Bodmer M., Athwal D., Alegre M. L., Bluestone J. A. Humanized OKT3 antibodies: successful transfer of immune modulating properties and idiotype expression. J Immunol. 1992 May 1;148(9):2756–2763. [PubMed] [Google Scholar]
  46. Yagita H., Nakamura T., Karasuyama H., Okumura K. Monoclonal antibodies specific for murine CD2 reveal its presence on B as well as T cells. Proc Natl Acad Sci U S A. 1989 Jan;86(2):645–649. doi: 10.1073/pnas.86.2.645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Yagita H., Okumura K., Nakauchi H. Molecular cloning of the murine homologue of CD2. Homology of the molecule to its human counterpart T11. J Immunol. 1988 Feb 15;140(4):1321–1326. [PubMed] [Google Scholar]
  48. Yssel H., Aubry J. P., de Waal Malefijt R., de Vries J. E., Spits H. Regulation by anti-CD2 monoclonal antibody of the activation of a human T cell clone induced by anti-CD3 or anti-T cell receptor antibodies. J Immunol. 1987 Nov 1;139(9):2850–2855. [PubMed] [Google Scholar]

Articles from Annals of Surgery are provided here courtesy of Lippincott, Williams, and Wilkins

RESOURCES